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Abstract

We study how the preimages of a mapping f : X → Y between manifolds vary
under perturbations. First, we consider the preimage of a single point and track
the history of its connected component as this point varies in Y. This information
is compactly represented in a generalization of the Reeb graph we call the Reeb
space. We study its local and global properties and provide an algorithm for its
construction. Using homology, we then consider higher dimensional connectivity of
the preimage. We develop a theory quantifying the stability of each homology class
under perturbations of the mapping f . This value, called robustness, is given to
each homology class in the preimage. The robustness of a class is the magnitude of
the perturbation necessary to remove it from the preimage. The generality of this
theory allows for many applications. We apply this theory to quantify the stability
of contours, fixed points, periodic orbits, and more.
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1

Introduction

This dissertation is about mappings between manifolds and their preimages. There
are two main contributions: Reeb spaces and well groups.

Given a mapping f : X → Y, the Reeb space is the quotient space identifying
two points x, y ∈ X if f(x) = f(y) and both points belong to the same component
in the preimage f−1(f(x)) = f−1(f(y)). The Reeb space captures the connectivity
relationship between components in preimages. We study some local and global
properties of this topological space.

The second main contribution in this dissertation is the idea of well groups. Using
homology, we look beyond connected components in preimages to higher dimensional
connectivity, for example tunnels or voids. We are interested in answering the fol-
lowing question. Given a homology class in the preimage of a point in Y, how much
must we perturb our mapping f to remove it from the preimage? The well group
makes this question precise and also answers it. The well groups are motivated by
the desire for measurably stable features in the preimage.

We start this chapter with a few vague words on stability and the nature of
reality. §1.2 assigns math words to the words of the previous section. We conclude
this chapter with a few words on the evolution of this work.

1.1 Stability

The ideas expressed here are a combination of the qualitative ideas of René Thom
[31, page 1] with the quantitative ideas of persistent homology [13].

A form is that which can be named.
A form is stable if it is measurable.
Only that which is stable can be named.
A form is stable.

1



A scale is a collection of measurements.
A form can not be named at a scale that does not include its measurement.

Reality is the creation, evolution, and destruction of forms at a given scale.

Science is the study of reality and its purpose is to predict the dynamics of form.

1.2 Our Model

The state space of a system is often modeled as a manifold. Probes assign to each
state of the system a point in a another manifold. For example, the intensity of
a magnetic field, temperature, and pressure at each point in space gives a mapping
from space to R3. Variation is introduced by changes to the parameters of the system
or by the measurement device itself. If f is a smooth mapping from a manifold X to
a manifold Y and A is a submanifold of Y, variations to the mapping f introduces
dynamics to the inverse f−1(A). The form of interest is the homology of the inverse.
Let C be the space of all smooth mappings from X to Y. Then there is a closed subset
K of C, called the catastrophe set, such that if f lies outside K, small variations do
not effect the homology of the inverse. The qualitative nature of the form does not
change under small variations and in this sense, the form is stable. However, we
are interested in quantifying stability. That is, how much variation is necessary to
remove the form. The well groups measure the stability of each form.

1.3 History and Contributions

I started with almost no knowledge of topology. The popularity and simplicity of
the Reeb graph made it a good candidate to start with. After reading about time-
varying Reeb graphs [10], I started to think about Reeb spaces. The Reeb space is a
generalization of the Reeb graph defined for continuous mappings between manifolds.
Soon it was clear that the singularity set of the mapping plays an important role in
the structure of the Reeb space. This motivated a closer look at the singularities of
smooth mapping [18, 32]. A year down the road, I found a wealth of literature on
Reeb spaces [2, 22, 25, 29]. Of course, the literature does not name this space the
Reeb space. In fact, no one name seems to exist. The literature is restricted to Reeb
spaces of smooth mappings. I decided to focus on piecewise linear mappings and
their Reeb spaces. I studied both the local and global properties of the Reeb space
and gave the first algorithm for its construction.

The next project was to study the contour of a shape. Given a shape in R3 and a
plane orthogonal to the viewing direction, there is mapping, namely the orthogonal
projection, that takes the shape to the plane. The contour is the set of critical values
of this mapping. The goal was to find global properties of the contour that remain
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stable under perturbations of the mapping. Imagine walking a path in the plane
and looking at the preimage of each point along the way. A change in the preimage
coincides with the path crossing the contour. In other words, the contour is crossed
every time the stability of a component in the preimage goes to zero. This inspired
the definition of the well group. However, there are an infinite number of well groups
one for each real number. With the help of Dmitriy Morozov, I employed the new
idea of zigzag persistence [3] enabling us to connect the sequence of well groups with
homomorphisms. This allowed us to relate two well groups and talk about their
properties.

We arrived at the well group by studying the contour of a shape, but the well
group works for mappings between any pair of manifolds. This leads to more appli-
cations. For example, the set of fixed points of a mapping or a vector field can be
recast as the preimage of a mapping. Using well groups, we measure the robustness
of each fixed point. The robustness is the amount we must perturb the mapping or
vector field to remove it. I talk about more applications in §4.

3



2

Background

We begin with an introduction to smooth mappings, homology, piecewise linear
mappings, and persistence. We also use this chapter to establish notation.

2.1 Smooth Mappings

Many of the ideas introduced here can be found in introductory differential topology
books. See [18, 19, 21] for more details. For simplicity, we assume all manifolds are
without boundary.

2.1.1 Transversality

Let X and Y be differentiable manifolds. Two smooth mappings f, g : X → Y are
homotopic if there is a smooth mapping h : X× [0, 1]→ Y such that h0(x) = h(x, 0)
is f(x) and h1(x) = h(x, 1) is g(x), for every x ∈ X. We say a property of f is
infinitesimally stable if for every homotopy h with h0 = f , there is a value ε > 0
such that each mapping ht with t < ε has the same property. For example, consider
the function f : R → R defined as f(x) = x3. It has a root, at x = 0, and the
property that it has at least one root is infinitesimally stable. Furthermore, the
derivative of f has two roots both at 0. However, this property is not infinitesimally
stable because one can find a homotopy, namely ft = x3 − tx, that immediately
seperates the two roots of the derivative. Since no measurement in the real world is
perfectly determined, any property that is observable is infinitesimally stable.

Transversality is an infinitesimally stable property of the intersection between
two manifolds. Roughly speaking, an intersection is transverse if the two subman-
ifolds intersect in a nonzero angle. For example, consider two curves intersecting
in the plane as shown in Figure 2.1. The intersection on the left is non-transverse
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Figure 2.1: A non-transverse intersection on the left is transverse after a small pertur-
bation of one of the curves.

because the two tangent lines at the intersection point coincide. However, the inter-
section on the right is transverse because the two tangent lines at each intersection
point intersect in a nonzero angle and therefore span the entire plane. There is an
arbitrarily small perturbation taking the non-transverse intersection to a transverse
intersection.

We now give the formal definition of a transverse intersection. Letting a = f(x),
the derivative

Df(x) : TxX→ TaY

of f at x is a linear map from the tangent space at x to the tangent space at a. The
mapping f is transverse to a submanifold A ⊆ Y, denoted as f >∩ A, if for each x ∈ X
with f(x) ∈ A, the image of the derivative of f at x together with the tangent space
of A at a = f(x) spans the tangent space of Y at a. More formally, f >∩ A if

Df(x)(TxX) + TaA = TaY,

for all x ∈ X with f(x) = a ∈ A.
At this point, you might wonder how the definition of transverse mappings relates

to the intersection of submanifolds. The inverse f−1(A) is homeomorphic to the
intersection of two submanifolds in the product space X× Y. Write

gf f = {(x, y) ∈ X× Y | y = f(x)},

for the graph of f . Then gf f ∩ (X × A) maps homeomorphically to the preimage
f−1(A) by a projection to the first factor. The two tangent spaces at every point
in the intersection touch at a nonzero angle iff f is transverse to A. Amazingly, if
f >∩ A, the inverse f−1(A) is a manifold of the same codimension as A.

Preimage Theorem [19]. If f : X → Y is transverse to a submanifold A ⊆ Y,
then the preimage f−1(A) is a smoothly embedded submanifold of X. Moreover, the
codimension of f−1(A) in X equals the codimension of A in Y.

5



A A

Figure 2.2: Construct a mapping from the 1-sphere to itself by taking the radial pro-
jection of the outside curve to the inside curve. Letting A be a single point of the inside
curve, the intersection number is −1 for the mapping on the left and 0 for the right.

2.1.2 Oriented Intersection Number

Given two ordered bases {u1, . . . , um} and {v1, . . . , vm} on a common real vector
space of dimension m, there is a unique linear isomorphism A : U → V such that
vi = Aui, for each i. The two ordered bases are equivalently oriented if the sign of
the determinant of A is positive. This partitions the set of all ordered bases into
two classes. An orientation is an arbitrary assignment of a plus to one class and a
minus to the other. The isomorphism A is called orientation preserving if the sign
of its determinant is positive and orientation reversing otherwise. Now let X be
an m-dimensional manifold and assign to each tangent space TxX an orientation.
There is a local parameterization φ : Rm → X for each point x ∈ X and its derivative
Dφ(a) : Rm → Tφ(a)X is a linear isomorphism between the two real vector spaces. We
say φ is an orientation preserving mapping if for each a ∈ Rm, the derivative Dφ(a)
is orientation preserving. An orientation of X is an assignment of an orientation
to each tangent space TxX such that there is an orientation preserving mapping for
each x ∈ X.

Let f : X→ Y be a smooth mapping between two compact orientable manifolds.
Now let A ⊂ Y be a closed orientable submanifold such that dim X+dim A = dim Y.
If f >∩ A, f−1(A) is a finite collection of points. Assign to each point x ∈ f−1(A)
a plus one if Df(x)(TxX) + Tf(x)A is equivalently oriented with Tf(x)Y, otherwise
assign to x a minus one. The intersection number, I(f,A), is the sum of the plus
ones and minus ones in the inverse f−1(A). Figure 2.2 shows two mappings from a
circle to itself. Choosing A as a single point on the 1-sphere, the mapping on the left
has intersection number −1 and the mapping on the right has intersection number
0. It is not too hard to believe that the intersection number is homotopy invariant.
That is, if g is homotopic to f , then I(f,A) = I(g,A) [19].
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2.1.3 Jet Bundles

The jet bundle allows for a geometric understanding of the derivative. Combined
with the idea of transversality, we begin to identify infinitesimally stable properties
of smooth mappings.

Let f, g : X→ Y be two smooth mappings taking an m-manifold to an n-manifold
such that f(x) = g(x) = a. We say f has first order contact with g at x if the first
derivatives Df(x) and Dg(x) equal. In general, f has k-th order contact with g at
x if the derivative Df has (k − 1)-st order contact with Dg at every point in TxX.
We write f ∼k g at x if f has k-th order contact with g. f ∼k g at x iff the Taylor
expansion of the two mappings in a common neighborhood of x are equal up to and
including order k. See [18, page 37] for a proof.

Let Jk(X,Y)x,a be the set of equivalence classes under the equivalence relation
“∼k at x.” In other words, identify two mappings f and g with f(x) = g(x) = a if f
has k-th order contact with g at x. The k-th order jet bundle Jk(X,Y) is the disjoint
union of Jk(X,Y)x,a over all pairs (x, a). In symbols,

Jk(X,Y) =
⊔

(x,a)∈X×Y

Jk(X,Y)x,a.

For example, for k = 0, the jet bundle is in one-to-one correspondence with X× Y.
Specifically, the point (x, a) ∈ X× Y corresponds to all mappings f : X→ Y taking
x to a. Similarly, for k = 1, the jet bundle is in one-to-one correspondence with
X×Y×Rmn because Rmn parameterizes the set of linear mappings from Rm to Rn.
This can be generalized to k > 1, as discussed shortly.

An element σ of Jk(X,Y) is called a k-jet. The k-jet σ belongs to Jk(X,Y)x,a
for some pair of points (x, a). This gives canonical mappings to X and Y called
the source and target mappings α : Jk(X,Y) → X and β : Jk(X,Y) → Y defined
by α(σ) = x and β(σ) = a. The spray of f is the mapping jkf : X → Jk(X,Y)
that takes each point x ∈ X to the k-jet representing the equivalence class of f in
Jk(X,Y)x,f(x). The spray is a section of the jet bundle. For k = 0, the image of the
spray has codimension n and for k = 1, its codimension is n+mn.

We now give a feeling for the topology on the jet bundle. Again, we refer the
reader to [18] for details. Each k-jet is determined by its source, target, and a Taylor
expansion up to and including order k, ignoring the constant term. Fix a source
x ∈ X and a target a ∈ Y and let f be a mapping taking x to a. Now decompose
f into its n component functions in some neighborhood of x. This gives n Taylor
expansions each a polynomial in m variables of degree at most k with the constant
term equal to zero. Let Akm be the vector space of polynomials in m variables of degree
at most k with the constant term equal to zero. For example, A1

m is isomorphic to

Rm, while A2
m is isomorphic to Rm+(m+1

2 ). Let Bkm,n = ⊕ni=1A
k
m be n copies of Akm.

The reason for defining Bkm,n is that we have a bijection between Jk(X,Y)x,a and the

vector space Bkm,n. Placing a copy of Bkm,n above each pair of source and target point
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pair, the jet bundle is a manifold of dimension

dim Jk(X,Y) = m+ n+ dim Bkm,n.

To get a feeling for the dimensionality of this space, we note that the dimension of
Bkm,n is 0 for k = 0, mn for k = 1, (m+

(
m+1

2

)
)n for k = 2, and (m+

(
m+1

2

)
+
(
m+2

3

)
)n

for k = 3. The mappings α, β, and jkf are smooth.

2.1.4 The Whitney C∞ Topology

The jet bundle induces a topology on the space of all smooth mappings C∞(X,Y).
Letting U be an open subset of Jk(X,Y), define

MU = {f ∈ C∞(X,Y) | jkf(X) ⊂ U}.

The collection of sets {MU} for open subsets U of Jk(X,Y) forms a basis for a
topology called the Whitney Ck topology. Let Wk be the Whitney Ck topology on
Ck(X,Y). The Whitney C∞ topology on C∞(X,Y) is the topology generated by the
basis ∪∞k=0Wk.

Surprisingly, the sprays of most mappings are transverse to a fixed submanifold of
the jet bundle. This is essentially the statement of Thom’s Transversality Theorem.
A few more definitions are required before we can state the theorem. A subset of a
topological space F is residual if it is the countable intersection of open dense subsets
of F. We say F is a Baire space if every residual subset is dense [18, page 44]. The
space C∞(X,Y) with the Whitney C∞ topology is a Baire space.

Thom’s Transversality Theorem [18]. Let X and Y be manifolds and W a
submanifold of Jk(X,Y). The set

TW = {f ∈ C∞(X,Y) | jkf >∩W}

is a residual subset in the Whitney C∞ topology. If W is closed, then the set TW is
open.

Thom’s Transversality Theorem is useful in arguing about generic properties of
smooth mappings.

2.1.5 Singularities

A point x ∈ X is a singular point of the smooth mapping f : X → Y if the first
derivative Df(x) at x is not surjective. A point a ∈ Y is a regular value of f if f >∩ a
otherwise, a is a singular value. Equivalently, a is a singular value of f if it is the
image of a singular point. Define the singular set of f , Σf , as the set of singular
points of f . Often a singular point is called a crtitical point and a singular value a
critical value. We will use “singular” and “critical” interchangeably.

8



Figure 2.3: Shown is a height function on a surface (left) and a mapping taking a surface
to the plane (right). The singular set of the height function is the set of points where the
gradient vanishes. For the mapping to the plane, the singular set is the curve where the
surface folds over on itself in the image.

Consider the height function on the surface shown in Figure 2.3 on the left. The
singular points are where the gradient of f vanishes. Also shown in Figure 2.3 is a
mapping taking a surface to the plane. The singular points are where the surface
folds over on itself in the image. One can easily imagine functions and mappings in
which the singular set has dimension higher than in the example in Figure 2.3. For
example, the singular set of the height function may have an entire line of points
where the gradient vanishes. Similarly, the mapping to the plane may take an entire
surface patch to a curve in the plane. However, in both cases, there are arbitrarily
close mappings with nice singular sets. We use Thom’s Transversality Theorem to
shed some light on the generic behavior of the singular set. We assume the dimension
m of X is at least the dimension n of Y, otherwise the singular set is the entire space
X.

Recall that a 1-jet σ ∈ J1(X,Y) is an equivalence class of mappings in C∞(X,Y).
Letting x = α(σ) be the source of σ, any two mappings f and g in σ satisfy f(x) =
g(x) and Df(x) = Dg(x). Now take a mapping f in σ. Define the corank of σ as the
corank of the image of the first derivative Df(x). Recall that the spray j1f : X →
J1(X,Y) takes each point x ∈ X to the equivalence class of f in J1(X,Y)x,f(x). A
point x belongs to the singular set Σ(f) iff the corank of j1f(x) is greater than zero.
Let us introduce the singular manifold of order r,

Sr = {σ ∈ J1(X,Y) | corankσ = r},

as the collection of jets with corank r. As described in [18], the singular manifold Sr
is a submanifold of J1(X,Y) with codimension r(m−n+ r). The singular set of f is
then

Σ(f) = j1f
−1

(⋃
r≥1

Sr

)
.

Now assume the spray of f is transverse to Sr. By the Preimage Theorem, the

9



inverse j1f
−1(Sr) is a submanifold of X with codimension r(m− n+ r). Define

Tr = {f ∈ C∞(X,Y) | j1f >∩ Sr}
as the set of mappings whose sprays are transverse to Sr. By Thom’s Transversality
Theorem, the set Tr is a residual subset of C∞(X,Y) for each r. Recall C∞(X,Y) with
the Whitney C∞ topology is a Baire space. This implies the intersection T = ∩r≥1Tr

is a residual subset and therefore dense. In other words, the set of mappings whose
sprays are transverse to Sr for every r is dense. We say f is generic if f belongs to
T.

For a sanity check, consider the case Y = R. If the spray of f is transverse to
Sr, then the inverse j1f

−1(Sr) is a submanifold of codimension r(m − 1 + r). The
singular manifold Sr is empty for r > 1 and of codimension m for r = 1. This means
the singular set of a generic function f is a collection of isolated points. A function
f is Morse if j1f >∩ S1. In other words, f is Morse iff it is generic.

Now consider the case Y = R2. If the spray of f is transverse to Sr, then the
inverse j1f

−1(Sr) has codimension greater than m for r > 1 and codimension m− 1
when r = 1. This implies j1f

−1(Sr) is empty for r > 1. For generic mappings to the
plane, the singular set is a smoothly embedded 1-submanifold.

Now consider a generic mapping f : X → R4. The codimension of the inverse
j1f
−1(S1) is m − 3 and the codimension of j1f

−1(S2) is 2m − 4. When m = 4,
j1f
−1(S2) is empty or of dimension zero. As a consequence, the singular set of a

generic mapping need not be a smoothly embedded submanifold.

2.2 Simplicial Complexes and Homology

A simplicial complex is a special type of topological space obtained by gluing together
vertices, edges, triangles, and so on. Simplicial homology takes a simplicial complex
and makes precise the idea of holes in the space.

2.2.1 Simplicial Complexes

An i-simplex σ is the convex hull of i+1 affinely independent points in some Euclidean
space. Letting u0, u1, . . . , ui be the points, σ is the set of convex combinations, that
is, points

∑
sjuj with

∑
sj = 1 and sj ≥ 0 for all 0 ≤ j ≤ i. The interior of σ

consists of the convex combinations for which all the sj are strictly positive. The
dimension of the simplex is dimσ = i, which is at most the dimension of the ambient
Euclidean space. A face of σ is spanned by a non-empty subset of the i + 1 points.
All faces are proper except for σ which is an improper face of itself. The boundary
of the simplex, denoted as ∂σ, is the union of all its proper faces. If τ and υ are
two disjoint faces of σ with dim τ + dim υ = dimσ − 1 then σ is the join of the two,
σ = τ ∗υ, meaning it is the union of line segments connecting points of τ with points
of υ. Any two of these line segments are either equal, disjoint or meet at a common
endpoint.

10



A simplicial complex is a finite set of simplices K such that every face of a simplex
in K belongs to K and the intersection of any two simplices in K is either empty or
a face of both. K is an m-complex if the largest dimension of any of its simplices
is m. The underlying space of K is the union of the simplices, |K| =

⋃
σ∈K σ,

together with the subspace topology inherited from the ambient space. Avoiding
any possible confusion, we will sometimes blur the distinction between a complex
and its underlying space. A subcomplex is a simplicial complex L ⊆ K. L is called
full subcomplex of K if it contains every simplex of K whose vertices lie in L. For
every non-negative integer i ≤ m, the i-skeleton, denoted as K(i), is the largest
subcomplex of dimension i; it consists of all simplices of dimension i or less in K.
The 0-skeleton is often referred to as the vertex set, VertK = K(0). The star of a
simplex σ, denoted as Stσ, is the set of simplices in K that have σ as a face. We get
the closed star if we add all faces of simplices in the star. The link of σ, denoted as
Lkσ, consists of all simplices in the closed star that have an empty intersection with
σ. Note that the closed star and the link are complexes while the star is generally
not a complex. A subdivision of K is a simplicial complex with the same underlying
space for which every simplex is contained in a simplex in K. Particularly useful is
the barycentric subdivision, which we denote as SdK. To describe it, we recall that
the barycenter of an i-simplex is the average of its i+ 1 vertices. The barycenters of
the simplices in K form the vertex set of SdK and a subset of the barycenters spans
a simplex iff the corresponding simplices in K form a chain in which every simplex
is a proper face of the next in the sequence.

We say K triangulates a topological space homeomorphic to its underlying space.
If K triangulates an m-manifold then every point of |K| has a neighborhood home-
omorphic to Rm. However, this does not imply that the link of every i-simplex
triangulates a sphere of dimension m − i − 1. A counterexample to this seemingly
plausible property can be found in Edwards [16], see also [30]. We call K a com-
binatorial m-manifold if it satisfies this stronger property, that is, the link of every
vertex triangulates the (m−1)-sphere and is itself a combinatorial (m−1)-manifold.

2.2.2 Homology

Homology is an algebraic language making precise the idea of holes in a topological
space. We define the homology groups of a finite simplicial complex using Z/2Z
coefficients.

A p-chain is a formal sum a0σ0 + a1σ1 + · · · + amσm of all p-simplices, with
ai ∈ {0, 1}. The sum of two p-chains is another p-chain obtained by adding the
corresponding coefficients using Z/2Z arithmetic. The p-th chain group, denoted as
Cp(K), is the abelian group of p-chains. The boundary of a p-simplex is the sum of its
(p− 1)-dimensional faces and therefore an element of Cp−1(K). The p-th boundary
homomorphism, ∂p : Cp(K)→ Cp−1(K), takes each p-chain c ∈ Cp(K) to the sum of
the (p− 1)-faces of the simplices in c. A p-chain c is a cycle if its boundary vanishes.
The set of cycles, Zp(K), is the kernal of ∂p and forms a subgroup of Cp(K). The
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boundary of a boundary is always zero. In other words, ∂p−1 ◦ ∂p = 0. This implies
the image of ∂p+1, denoted as Bp(K), is a subgroup of Zp(K). The p-th homology
group is defined as the quotient group Hp(K) = Zp(K)/Bp(K). For Z/2Z arithmetic,
the homology group Hp(K) is a vector space and its rank, the dimension of the vector
space, is the p-th Betti number denoted as βp(K).

We now define relative homology. Letting L be a subcomplex of K, the chain
group Cp(L) is a subgroup of Cp(K). The quotient group Cp(K,L) = Cp(K)/Cp(L)
is the relative p-th chain group of the pair (K,L) and its elements are called relative
p-chains. An element c of Cp(K,L) is typically written c = d + Cp(L) where d is a
p-chain containing only those p-simplices in K − L. The boundary homomorphism
on Cp(K) induces a homomorphism ∂p : Cp(K,L)→ Cp−1(K,L) between the relative
chain groups. A relative p-chain is a relative p-cycle if its boundary is an element
of Cp(L). A relative p-chain is a relative p-boundary if its in the image of ∂p+1. As
before, call Zp(K,L) the kernel of ∂p and Bp(K,L) the image of ∂p+1. The p-th
relative homology group is the quotient group Hp(K,L) = Zp(K,L)/Bp(K,L).

2.3 Piecewise Linear Mappings

A necessary step towards computing properties of general smooth mappings is their
discretization. This section introduces piecewise linear mappings and its singularity
set, called the Jacobi set.

2.3.1 PL Mappings

Let u1, u2, . . . , un be the vertices of a simplicial complex K, σ a simplex in K, and x
a point of σ. Recall that x is a unique convex combination of the vertices of σ so we
can write x =

∑n
j=1 sjuj with

∑n
j=1 sj = 1, sj ≥ 0 for all j, and sj = 0 unless uj is

a vertex of σ. The sj are unique and are called the barycentric coordinates of x. We

use them to extend a vertex map f̂ : VertK → Rn by piecewise linear interpolation
to a piecewise linear or PL mapping f : |K| → Rn defined as

f(x) =
n∑
j=1

sj f̂(uj).

By construction, the restriction of f to a simplex of K is linear.
We call f a generic PL mapping if the images of the vertices have no structural

properties that can be removed by arbitrarily small perturbations of the vertex map.
In particular, we call f : |K| → Rn a generic PL mapping only if the restrictions of f
to simplices of dimension n or less are injective. That is, the image of every simplex
of dimension i ≤ n is an i-simplex.

The following theorem is analogous to the Preimage Theorem for smooth map-
pings.
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Figure 2.4: We see a vertical edge and the corresponding 1-ball obtained by connecting
its midpoint to the respective third vertices of the two triangles in the star. Connecting
every point of the 1-ball to the endpoints of the edge gives a decomposition of the closed
star. Pieces of the decomposing line segments define a homeomorphism between the 1-ball
and a portion of the preimage f−1(a).

PL Preimage Theorem. Let K be a combinatorial m-manifold, f : |K| → Rn

a generic PL mapping, and a ∈ Rn a point not in the image of the (n− 1)-skeleton
of K. Then f−1(a) is either empty or a manifold of dimension m− n.

Proof. For m < n the preimage of a is empty and for m = n it is either empty or a
finite set of points. In both cases there is nothing left to show. We therefore assume
m > n for the remainder of this proof.

Let σ be an i-simplex in K. Since K is a combinatorial m-manifold, the link of
σ triangulates a sphere of dimension m− i− 1. Letting u be the barycenter of σ, we
construct Bσ = u∗|Lkσ| by drawing a line segment from u to every point in the link.
Clearly, Bσ is a PL ball of dimension m− i. We further draw a line segment between
every point of Bσ and every point of the boundary of σ, as sketched in Figure 2.4.
Any two of these line segments are either disjoint or meet at a common endpoint,
which is either in Bσ or in ∂σ. Together, the line segments decompose the closed
star of σ.

Next we show that for i = n, the portion of f−1(a) inside the closed star of σ is
homeomorphic to Bσ. Equivalently, every vertex of the preimage has a neighborhood
homeomorphic to Rm−n. This implies that f−1(a) is indeed an (m − n)-manifold.
Let σ be a n-simplex in K that contains a point uσ with f(uσ) = a. Because f−1(a)
avoids the (n − 1)-skeleton of K, uσ belongs to the interior of σ. Let τ ∈ Stσ
and let υ be its maximal face disjoint from σ. Hence σ ∗ υ = τ and u ∗ υ is the
contribution of τ to Bσ. Letting j be the dimension of τ we have dim υ = j − n− 1
and dim (u ∗ υ) = j−n. Furthermore, f−1(a) intersects τ in a polytope of dimension
j − n. The line segments in the decomposition of Bσ ∗ ∂σ define a piecewise linear
homeomorphism from u ∗ υ to this polytope; see Figure 2.4. The collection of such
then gives a homeomorphism from Bσ to the intersection of f−1(a) with the closed
star of σ.
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2.3.2 Upper and Lower Links

Suppose h : |K| → R is a generic PL function on K. This implies h(ui) 6= h(uj)
whenever ui and uj are the two endpoints of an edge in K. We define the lower link
of a vertex uj as the collection of simplices in the link whose vertices all have smaller
function value than uj. Symmetrically, the upper link is the collection of simplices
in the link whose vertices have larger function value:

Lk−uj = {σ ∈ Lkuj | a ∈ σ ⇒ h(a) < h(uj)};
Lk+uj = {τ ∈ Lkuj | a ∈ τ ⇒ h(a) > h(uj)}.

Assuming K is an m-manifold, the link of uj is a triangulation of the (m − 1)-
dimensional sphere, Sm−1. The lower and upper links are full subcomplexes of this
triangulation. Note that their union is not necessarily the entire link as there are
simplices that have some of their vertices with higher value, and some with lower
value.

We measure the way the lower link is connected to the rest of the complex using
reduced homology with Z/2Z coefficients. Following the usual convention, we write
β̃i for the rank of the dimension i reduced homology group. Denoting the ranks of
the non-reduced homology groups by βi, we have β̃i = βi unless i < 1. Furthermore
β̃0 = β0 − 1 and β̃−1 = 0 unless the lower link is empty in which case we have
β̃0 = β0 = 0 and β̃−1 = 1. All β̃i are non-negative integers. We call uj a regular
vertex of h if all reduced Betti numbers of its lower link vanish and a singular or
critical vertex, otherwise. It is a simple singular vertex if

∑
β̃i = 1. Simple singular

points are conveniently classified by the index that exceeds the dimension of the
non-zero reduced homology group by one; see Table 2.1. For m = 3, it is common to
refer to simple singular vertices of index 0, 1, 2, 3 as minima, 1-saddles, 2-saddles,
maxima.

type index β̃−1 β̃0 β̃1 β̃2

regular 0 0 0 0
minimum 0 1 0 0 0
1-saddle 1 0 1 0 0
2-saddle 2 0 0 1 0
maximum 3 0 0 0 1

Table 2.1: A simple singular vertex of index i is characterized by β̃i−1 = 1 and β̃j = 0
for all j 6= i− 1.

2.3.3 Jacobi Sets

We now return to a multivariate generic PL mapping f : |K| → Rn. Following [8],
we consider all linear combinations of the components of f . Let ~u be a unit vector
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in Sn−1 and consider the PL function h~u : |K| → R defined by

h~u(x) = 〈f(x), ~u〉,

the height of the image of the point x in the direction ~u. Assuming h~u is constant on
a simplex τ in K, we can define its lower link the same way as for a vertex, namely
as the collection of simplices in the link whose vertices have function value less than
the points of τ . The upper link of τ is similarly defined. Assuming the upper and
lower links exhaust all vertices of Lk τ , we use the reduced homology of the lower
link to decide whether τ is regular or singular for h~u, and if it is singular whether or
not it is simple.

If τ is an (n − 1)-simplex, then there are exactly two unit vectors for which the
height functions they define are constant on τ , namely the unit normals ~u and −~u
of the image of τ in Rn. The lower link of τ under one height function is its upper
link under the other. Recall the link of τ is an (m − n)-sphere. Alexander duality
says that if a submanifold of the sphere has nontrivial reduced Betti numbers, then
so does its complement. This implies τ is singular for h~u iff it is singular for h−~u. In
other words, τ has only one chance to be singular. Finally, we define the Jacobi set
of f as the collection of singular (n − 1)-simplices together with their faces. These
simplices form a subcomplex of K which we denote as Jf .

2.3.4 Degree Mod 2

Consider a mapping between compact manifolds of the same dimension. Two exam-
ples are the mappings described in Figure 2.2. Roughly speaking, the mod 2 degree
of a mapping is zero if the mapping covers the range space an even number of times
and one if it covers the image an odd number of times. The advantage of restricting
ourselves to zero and one as opposed to the integers is that the manifolds involved
need not be orientable. We use homology with Z/2Z coefficients to define the degree
mod 2 of a mapping.

Let K and L be triangulations of two compact manifolds without boundary. As
before, we assume the two manifolds have the same dimension, m. Using Z/2Z coeffi-
cients, the top dimensional homology groups Hm(K) and Hm(L) are both isomorphic
to Z/2Z. A simplicial mapping f : K → L taking simplices in K to simplices in L
induces a homomorphism fm : Hm(K) → Hm(L) between the two homology groups.
The degree mod 2 of f , deg f , is the image of fm which is 0 or 1.

For our purposes, the degree of a mapping between to pairs of spaces will be
more useful. Let Bc be the complement of an open ball in Rm and f : |K| → Rm a
continuous PL mapping. Now let C be a component of f−1(B). We think of C as an
m-chain and assume its boundary is empty or if not empty, maps to Bc via f . This
means the group Hm(C, ∂C) is isomorphic to Z/2Z. The group Hm(Rm, Bc) is also
isomorphic to Z/2Z. We define the degree mod 2 of the mapping f restricted to C
as the image of the homomorphism f ′m : Hm(C, ∂C) → Hm(Rm, Bc). An important
and later useful property of the degree mod 2 is that it is homotopy invariant. That
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H(Xi−1) H(Xi) H(Xj−1) H(Xj)

α

Figure 2.5: A class α is born at Xi and dies entering Xj .

is, if one is to continuously deform a mapping f : (C, ∂C) → (Rn, Bc) making sure
that ∂C maps to Bc at all times, then the degree mod 2 does not change. Note that
if the inverse f−1(0) does not intersect the component C, then the degree mod 2 of
f restricted to C is zero.

2.4 Persistence

Persistent homology [5, 9, 13, 33] is an algebraic language that tracks the history
of homology classes in a filtration of a topological space. This history is compactly
represented in a diagram called the persistence diagram. An important property of
persistence is that the persistence diagram is stable.

To simplify notation, we suppress dimensions and refer to H(X) as the direct sum
⊕Hp(X) of all the homology groups.

2.4.1 Tame functions

Let f : X → R be a continuous function on a compact manifold X. Denote by
Xr the sublevel set f−1(−∞, r]. For r ≤ s, the inclusion of Xr into Xs induces a
homomorphism fr,s : H(Xr) → H(Xs) between the two homology groups. A value r
is a homological critical value of f if for every sufficiently small δ > 0, the homomor-
phism fr−δ,r+δ is not an isomorphism. The function f is tame if the homology group
of each sublevel set has finite rank and there are only finitely many homological
critical values.

Choose a0 < a1 < . . . < a` regular values straddling the ` homological critical
values, r1 < . . . < r`, of f . Letting Xi = f−1(−∞, ai], we have the following sequence
of homology groups connected by maps induced by inclusion:

0 = H(X0)→ H(X1)→ · · · → H(X`) = H(X). (2.1)

We say a homology class α is born at Xi if it does not belong to the image of fi−1,i.
The class α dies entering Xj if the image of fi−1,j−1 does not contain fi,j−1(α) but
the image of fi−1,j does contain fi,j(α). Note that if a class α is born at Xi, then
every class in the coset [α] = α+ im fi−1,i is born at Xi. Similarly, if the class α dies
entering Xj, the entire coset [α] dies entering Xj. See Figure 2.5.
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Figure 2.6: The information contained in the extended sequence of homology groups
(2.2) is represented in the above three diagrams. The points in each diagram are restricted
to the shaded region. For reasons of stability, each diagram contains the diagonal.

The sequence in (2.1) starts with zero but ends in a possibly nonzero group. This
allows for the possibility of a class that never dies. We call these essential classes
as they represent the actual homology of the space. To define the persistence of an
essential class, we follow [5] and extend (2.1) using relative homology groups. Define
the superlevel set Xi as f−1[a`−i,∞]. For i < j, the inclusion Xi ↪→ Xj induces a
homomorphism H(X,Xi) → H(X,Xj). We have the following extended sequence of
homology groups:

0 = H(X0)→ H(X1)→ · · · → H(X`) = H(X) =

H(X,X0)→ H(X,X1)→ · · · → H(X,X`) = 0. (2.2)

Applying the definition of birth and death to the extended sequence, all classes
eventually die.

2.4.2 Stability

The information contained within (2.2) can be compactly represented by the persis-
tence diagrams, Dgmp(f), of f , one for each dimension p. Each diagram is a multiset
of points in the plane containing one point (ri, rj) for each coset of classes born at Xi

or (X,X`−i−1), and dying entering Xj or (X,X`−j−1). For reasons of stability, we also
add the points on the diagonal to Dgmp(f). There are three types of points in the
diagram corresponding to the three different locations of its births and deaths. The
ordinary subdiagram, Ordp(f), is the submultiset of points representing the cosets
born and dying in the first half of (2.2). The relative subdiagram, Relp(f), is the
submultiset of points representing cosets born and dying in the second half of (2.2).
Finally, the extended subdiagram, Extp(f), is the submultiset of points representing
cosets born in the first half and dying in the second half of the extended filtration.
The points in Ordp(f) lie above the diagonal while the points in Relp(f) lie below the
diagonal. The points in Extp(f) may lie on either side of the diagonal. See Figure
2.6.
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Define the distance between two tame functions f, g : X→ R, as

‖f − g‖∞ = sup
x∈X
|f(x)− g(x)|.

The L∞-distance between two points a = (a1, a2) and b = (b1, b2) in the plane is
‖a− b‖∞ = max{|b1− b1|, |b2− b2|}. Now let η : Dgmp(f)→ Dgmp(g) be a bijection
between the two persistence diagrams for dimension p. We take the supremum
L∞-distance between the matched points and define the bottleneck distance as the
infimum over the supremums,

W∞(Dgmp(f),Dgmp(g)) = inf
η

sup
a
‖a− η(a)‖∞.

The bottleneck distance between the two diagrams is at most the distance between
the two functions.

Stability of Persistence Diagrams [4, 5]. Let f, g : X → R be tame func-
tions on a triangulable space X. Then for each dimension p,

W∞(Dgmp(f),Dgmp(g)) ≤ ‖f − g‖∞.

2.4.3 Computation

The history of births and deaths is efficiently computable. Assume we are given a
filtration

∅ = K0 ⊂ K1 ⊂ · · · ⊂ K` = K

of a simplicial complex K such that the difference between two consecutive complexes
is a single simplex. Applying the homology functor, we get a sequence of homology
groups connected by homomorphisms induced by inclusion. The filtration is neatly
encoded in a single boundary matrix. Here the i-th row and column represents a
single simplex, namely Ki − Ki−1. We place a 1 in entry (i, j) of the boundary
matrix if the simplex i belongs to the boundary of simplex j otherwise we place a
0. A reduction of this matrix similar to the Smith normal form gives all the birth
and death information [9, 6, 13]. The running time of the reduction algorithm is on
the order of the number of simplices in the complex K cubed. There are examples
requiring the worst case cubic time [27].
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3

Reeb Spaces

Given a function f : X → R, its Reeb graph represents the components of the level
sets as points and expresses their relationship by forming a 1-dimensional space. The
situation for mappings to Rn, for n > 1, is significantly more complicated and the
topic of this chapter.

There is some prior work on the extension of Reeb graphs to Reeb spaces. The
existing work is limited to bivariate, generic, smooth mappings.

• Burlet and de Rham study smooth, bivariate mappings on orientable 3-manifolds
[2]. Under the assumption that every point of the singular set is definite (ap-
pears as a minimum for some linear combination of the two components), they
establish relationships between the topology of the 3-manifold and that of the
Reeb space. Porto and Furuya extend this work to orientable d-manifolds for
d ≥ 3 [29].

• Motivated by the study of immersions of 3-manifolds in R4, Levine and coau-
thors give a complete local classification of points in the Reeb space of bivariate,
generic, smooth mappings on orientable as well as non-orientable 3-manifolds
[24, 25]. Furuya extends this work to orientable 4-manifolds [17] and Kobayashi
and Saeki extend it further to d-manifolds for d ≥ 3 [22].

In the piecewise linear literature, we find only one paper that goes beyond Reeb
graphs [10]. It gives a dynamic algorithm for maintaining the Reeb graph in time
for piecewise linear functions.

In this chapter, we consider generic, piecewise linear mappings from a combi-
natorial m-manifold to Rn. Following the work on generic, smooth mappings, we
characterize points of the Reeb space, proving that their neighborhoods are cones
over Reeb spaces of one lower dimension. Complementing the local analysis, we
show that Reeb spaces have triangulations and coarsest stratifications. Their exis-
tence is established constructively. In the case of the triangulation, this leads to a
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polynomial-time algorithm while the construction of the coarsest stratification con-
tains an undecidable subproblem and leads to algorithms only for n ≤ 4.

3.1 Definition

Intuitively, the Reeb space of f parameterizes the set of components of preimages
of points c ∈ Rn. By the PL Preimage Lemma, all but a measure zero subset
of these components are manifolds of dimension m − n. As we vary c without
crossing the image of the (n − 1)-skeleton, these manifolds vary without a change
to their homeomorphism type. Since c has n degrees of freedom, this variation has
locally the structure of an n-manifold. Only when c belongs to the image of the
(n− 1)-skeleton can we have violations of the manifold property and get shapes that
appear as transitions between manifolds of possibly different global connectivity. In
summary, we imagine the Reeb space as a collection of n-manifolds glued to each
other in possibly complicated ways. The remainder of this chapter shows that this is
indeed the right intuition. We do this by first formally introducing the Reeb space
and then studying its local and global topological properties.

Call two points x and y in |K| equivalent, denoted by x ∼ y, if f(x) = f(y) and
x and y belong to the same component of the preimage f−1(f(x)) = f−1(f(y)). The
Reeb space is the quotient space obtained by identifying equivalent points, Wf =
|K|/ ∼, together with the quotient topology inherited from |K|. We already have a
map from |K| to Rn, namely f , and one from |K| to Wf called the quotient map, ρf .
The Stein factorization adds another map πf from Wf to Rn such that the triangle
commutes:

|K| f−→ Rn

ρf
↘ ↗πf

Wf .

It is not difficult to prove that the Reeb space is Hausdorff, that is, any two different
points in Wf have disjoint neighborhoods.

An example. We illustrate the definition with a mapping from a 3-manifold to the
plane. It is convenient to describe a smooth mapping. The extra details that appear
in the case of a PL approximation are not difficult. Consider f : R3 → R2 defined
by its two component functions f1(x1, x2, x3) = x3

2 − x1x2 + x2
3 and f2(x1, x2, x3) =

x1. The preimage of a point c = (s, t) is the intersection of two level surfaces,
f−1

1 (s) ∩ f−1
2 (t). Setting the two components to s and t we get x1 = t and x2

3 = γ(x2)
where γ(x2) = s−x3

2 + tx2. For t > 0, γ has a minimum and a maximum, for t = 0 it
has a single degenerate critical point, and for t < 0 it has no critical points. We are
interested in the number of roots and in particular, the values of x2 where γ(x2) ≥ 0
because only for these values do we get a solution to x2

3 = γ(x2). The odd degree
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Figure 3.1: Above the fold, the function γ has three roots and thus two intervals where
γ is positive. Below the fold, γ has one root and only one interval where γ is positive. The
Reeb space of this function is a fin glued to a disk along one of the fold curves.

polynomial γ has either 1 or 3 roots except where γ and its derivative have a common
zero, which occurs along the fold 27s2 = 4t3. As illustrated in Figure 3.1, this curve
decomposes the (s, t) plane into two regions, γ has three roots above, two roots on,
and one root below the fold. Accordingly, f−1(c) has two components above and
one component below the fold. It consists of a curve and an isolated point for c on
the left branch and of two touching curves for c on the right branch of the fold. It
should be clear how these cases transition between each other as we vary c in the
plane. The fold is the image of the singularity set under the mapping f .

We can reinterpret Figure 3.1 as a picture of the Reeb space of f . Indeed, it
is the image of Wf under the map πf in the Stein factorization. The region above
the fold is covered twice and the region below is covered once. Correspondingly,
the Reeb space consists of two sheets, one covering the entire plane and the other
covering the region above the fold. The latter connects to the former along the right
branch of the fold where the two components of f−1(c) come together to merge into
a single component. The left branch of the fold is the image of a boundary piece of
the second sheet and has nothing to do with the first sheet. In summary, the Reeb
space consist of the plane with another two-dimensional sheet attached to it, like a
fin sticking out of a fish as in Figure 3.1, right.

3.2 Local Structure

In this section, we prove that every point of the Reeb space has a neighborhood
homeomorphic to a cone over a Reeb space of dimension one lower. In stating and
proving this result, we follow the work on generic, smooth mappings in [22].
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Tubes, cores, and cones. As usual, we let K be a combinatorial m-manifold and
f : |K| → Rn a generic PL mapping. Let p be a point of Wf and c = πf (x) its image
in Rn. Let B be a closed ball centered at c that is sufficiently small so it intersects
the image of a simplex iff this image includes c. Considering the preimages of c
and of B, we are interested in the component C of f−1(c) whose image under the
quotient map is p and in the component T of f−1(B) that contains C. We call T a
tube and C its core. Define the boundary BdT of the tube T to be the intersection of
T with f−1(BdB), and let r : BdT → Rk be the restriction of f . The corresponding
restriction, ρr, of ρf maps BdT to Wr ⊂Wf . Since K is finite, |K| is compact. This
implies that BdT is compact and so is Wr. The (closed) cone over Wr is the space

cone(Wr) = (Wr × [0, 1])/(Wn × 1)

and its cone point is (Wr×1)/(Wr×1). We are now ready to state the first structural
result of this paper.

Cone Neighborhood Theorem. Let K be a combinatorial m-manifold, f :
|K| → Rn a generic PL mapping, and Wf the Reeb space of f . Then each point
x ∈ Wf has a homeomorphism from cone(Wr) to a closed neighborhood that maps
the cone point to x.

To prove this theorem, we use that the cone over Wr is compact and that Wf is
Hausdorff. Every continuous injection from a compact to a Hausdorff space is an
embedding [28, page 167]. This means that the compact space and its image are
homeomorphic. It thus suffices to construct a continuous injection η : cone(Wr) →
Wf that maps the cone point to x. The next paragraph does exactly that.

Constructing an embedding. We begin by constructing the barycentric subdivi-
sion of K, slightly modified by placing the new vertices not always at the barycenters
of the simplices. The connecting simplices are the same as in the standard definition.
Specifically, if C intersects the interior of a simplex σ in K then we choose a point
uσ ∈ C ∩ intσ as the vertex in SdK that represents σ. If C does not intersect the
interior of σ, then we choose a point uσ = intσ − T . This point exists because B is
sufficiently small. By construction, there is a subcomplex L of SdK whose underly-
ing space is the core, |L| = C; as illustrated in Figure 3.2. It is not difficult to prove
that L is a full subcomplex. Extending the concept of a star, we write StL for the
set of simplices in SdK that have a face in L. The tube is covered in its entirety by
the interiors of the simplices in StL.

We first use the barycentric subdivision to establish a continuous map from BdT×
[0, 1] to T whose restriction to BdT × [0, 1) is a homeomorphism onto T −C. Let τ
be a simplex in StL but not in L and let σ be the maximal face of τ that belongs
to L. We observe that σ is unique because L is full. Let υ be the maximal face of τ
that is disjoint from σ and note that τ = σ ∗ υ, the join of its two faces. Writing all
simplices τ as joins, we get a decomposition of the closed star of L into line segments.
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Figure 3.2: A piece of the barycentric subdivision of K. The white dots mark the vertices
of K and the black and shaded dots mark the new vertices of SdK. The shaded path is
a piece of the core which is subdivided by the subcomplex L of SdK. The corridor along
the path is a piece of the tube which is contained in StL.

As usual, any two line segments in this decomposition are either disjoint or meet at
a common endpoint. Each point of the core is an endpoint of a collection of line
segments. In contrast, a point x of the boundary of the tube belongs to exactly
one line segment. Letting y be the endpoint of this line segment in the core we let
λx : [0, 1] → T be the straight line mapping λx(t) = (1 − t)x + ty. Combining the
maps λx over all x ∈ BdT gives the map λ : BdT × [0, 1] → T . As anticipated,
the restriction of λ to BdT × [0, 1) → T − C is a homeomorphism and λ itself is
continuous. Finally, define γ : BdT × [0, 1] → Wf , by setting γ = ρf ◦ λ. The new
map γ takes BdT × 1 to the point p. The preimage of every other point q in the
image of γ is of the form U × t, where U is the preimage of a point in Wr and t is in
[0, 1).

Next we map BdT × [0, 1] to the cone over Wr. Recall that r : BdT → Rn is the
restriction of f to the boundary of the tube and ρr : BdT →Wr is the corresponding
restriction of ρf . We extend ρr to a map from BdT×[0, 1] to Wr×[0, 1] by taking the
product with the identity on the unit interval. Composing this product map with the
quotient map Wr × [0, 1]→ cone(Wr), we get ρ : BdT × [0, 1]→ cone(Wr) mapping
BdT × 1 to the cone point. The preimage of every other point q in cone(Wr) is of
the form U × t, where U is the preimage of a point in Wr and t is in [0, 1), as before.
This finally induces a unique map, η, from the cone to the Reeb space that makes
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the triangle commute:

BdT × [0, 1]

↙ ρ γ↘

cone(Wr)
η−→ Wf .

To finish the proof of the Cone Neighborhood Theorem we just need to realize that η
has the two required properties. It is continuous because both γ and ρ are continuous
and it is injective because the preimages of points in the images of ρ and of γ are
the same sets U × t.

3.3 Global Structure

The Reeb space has a canonical stratification into manifolds. We give a construction
in two steps, first triangulating the Reeb space and second by grouping simplices to
form the strata. The triangulation of the Reeb space implies the Cone Neighbor-
hood Theorem. However, the construction of the triangulation is very different in
flavor from the method used in the previous section to prove the Cone Neighborhood
Theorem.

Refining arrangement. As before, let K be a combinatorial m-manifold and
f : |K| → Rn a generic PL mapping. We also assume n < m, otherwise K is itself
a triangulation of the Reeb space. To prepare the construction of a triangulation,
we refine K by decomposing its simplices into prisms aligned with the preimages of
f . Specifically, we take the images of the (n − 1)-simplices of K in Rn, dissect the
space with their affine hulls, and decompose the simplices using the preimage of the
dissection. By assumption of genericity, the image of every (n − 1)-simplex σ ∈ K
is a (n − 1)-simplex and its affine hull is a (n − 1)-dimensional plane in Rn. The
collection of such planes dissects Rn into closed chambers, each a convex polyhedron
of dimension n. We call this the arrangement defined by the planes [7]. To refine K,
we take each simplex τ and decompose it into sets of points that map into a common
chamber or a common intersection of chambers. For an n-simplex τ , these sets are
n-dimensional convex polytopes, the same as the chambers. For an (n + 1)-simplex
τ , these sets are (n + 1)-dimensional prisms each uniquely determined by its top
and bottom faces of dimension n. It is allowed that the top and bottom faces touch
each other along a common face, generating a partially degenerate prism in between.
We show that it is not necessary to study decompositions of simplices of dimension
beyond n+ 1.

Skeleton Lemma. The Reeb space of f : |K| → Rn is homeomorphic to the
Reeb space of the restriction of f to the (n+ 1)-skeleton of K.
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Proof. Let e : |K(n+1)| → Rn be the restriction of f to the (n+1)-skeleton and recall
that points x and y are equivalent if they map to the same image, e(x) = e(y) =
c ∈ Rn, and belong to the same component of the preimage, e−1(c). By assumption
of genericity, this preimage is a complex whose maximal elements are edges, each a
line intersecting a (n+ 1)-simplex. In contrast, f−1(c) is a complex whose maximal
elements are (m−n)-dimensional convex polytopes, each the intersection of a (m−n)-
dimensional plane with a m-simplex. Since e−1(c) is the 1-skeleton of f−1(c), there is
a bijection between the components of the two preimages. Hence there is a bijection
between We and Wf . Finally, we observe that the quotient topologies are equivalent
implying that the bijection is a homeomorphism between the two Reeb spaces.

Triangulation. We use the decompositions of the skeleta of K to construct a
triangulation of the Reeb space. Let Q be the collection of preimages of chambers
decomposing the n-skeleton ofK and call two of these polytopes incident if they share
a common (n− 1)-dimensional face. Let P be the collection of prisms decomposing
the (n+ 1)-skeleton and recall that each ϕ ∈ P has two n-dimensional faces in Q, its
top face ϕt and its bottom face ϕb. The algorithm partitions Q into blocks, starting
with the partition into singletons, Q = {{ψ} | ψ ∈ Q}. We write Qψ for the block
that contains ψ.

for each prism ϕ ∈ P do

if Qϕt 6= Qϕb
then

merge the two blocks into one
endif

endfor.

When we merge two blocks, we remove both from Q and add their union as a new
block to Q. By construction, all polytopes in a block are preimages of the same
chamber in the arrangement. We say two blocks Qψ and Qψ′ are incident if ψ and
ψ′ are preimages of different but incident chambers in the arrangement and there are
at least two preimages, one in each block, that are incident.

A complex representing the Reeb space of f is readily obtained from the partition
into blocks. Specifically, for each block Qψ in Q, we take a copy of the chamber f(ψ)
and we glue these copies along shared (n − 1)-faces to reflect the incidence relation
among the blocks. We further decompose each polytope into simplices and thus
finally get a simplicial complex we denote as Wf . In summary, we have an algorithm
that triangulates the Reeb space of a generic PL mapping f from a combinatorial
m-manifold to Rn. Assuming m is a constant, the size of the triangulation and the
running time of the algorithm are both polynomial in the size of the combinatorial
manifold.

Stratification. In general, the complex Wf will be significantly finer than necessary
to represent the Reeb space. In a first step towards coarsening the representation,
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we group simplices to form manifolds. The result will be a stratification of Wf , that
is, a filtration

∅ = W−1 ⊆ W 0 ⊆ . . . ⊆ W n = Wf

such that each W j is a subcomplex of Wf and Sj = W j −W j−1 is either empty or a
j-manifold. We call Sj the j-stratum of the stratification and each of its components
a j-dimensional piece. In addition to being a j-manifold, we require that all points
of a piece are topologically equivalent. By this we mean that any two points x and y
of a piece have closed neighborhoods N(x) and N(y) in |Wf | and a homeomorphism
from one to the other that maps x to y and whose restriction to the piece is again
a homeomorphism. By the Cone Neighborhood Theorem the closed neighborhoods
are cones over (n − 1)-dimensional Reeb spaces. The requirement of topological
equivalence can therefore be reformulated in terms of these spaces. Consider the
2-dimensional Reeb space described in the example of §3.1. Its 2-stratum consists of
two sheets (mapping to the plane and to the fin), its 1-stratum consists of two curves
(mapping to the two branches of the fold), and its 0-stratum is one point (mapping
to the origin).

We construct the stratification in the order of decreasing dimension. At the top
dimension, we initialize Sn to the set of n-simplices, each a piece by itself. Then we
add simplices of lower dimension effectively merging and enlarging the pieces. For
this, we use a boolean subroutine doesBlend that decides whether or not a simplex
fits into a piece or between pieces of the current stratum. We will prove shortly that
each iteration starts with a complex W j of dimension at most j. Following the
same pattern as before, we can therefore construct the j-stratum of Wf as the top
dimension stratum of W j.

Set W n = Wf ;
for j = n downto 0 do

initialize W j−1 to the (j − 1)-skeleton of W j

and Sj to W j −W j−1;
for i = j − 1 downto 0 do

for each i-simplex ζ ∈ W j−1 do

if doesBlend(ζ, Sj) then
add ζ to Sj and remove it from W j−1

endif

endfor

endfor

endfor.

Note that Sj = W j−W j−1 is maintained throughout the algorithm. We still need to
establish that the algorithm constructs what we promise but this depends primarily
on the boolean subroutine that decides upon which simplices to add to a stratum.

Recognition. According to the definition of a stratification, we need to satisfy two
conditions when we add an i-simplex ζ to the current set Sj, the first guaranteeing
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that we have a j-manifold and the second that points in the same piece have home-
omorphic neighborhoods. We formalize both conditions by considering the second
barycentric subdivision and comparing links of vertices in this subdivision. Recall
that the first barycentric subdivision contains a vertex ξ̂ for each simplex ξ ∈ Wf .
We refer to it as a first generation vertex of Sd2Wf = Sd SdWf , noting that all its

neighbors are second generation vertices in Sd2Wf . The link of ξ̂ is a model for the
boundary of the closed neighborhood of any point in the interior of ξ. Let Sd2Sj be
the subset of simplices in Sd2Wf whose interiors are contained in |Sj|. We accept ζ
as a new simplex in the j-stratum if the following two conditions are satisfied:

1. The link of ζ̂ in Sd2Sj is a (j − 1)-sphere.

2. There is a homeomorphism that maps the link of ζ̂ to the link of ξ̂ in SdWf ,
where ξ is already in Sj and belongs to the star of ζ. We also require that the
restriction of this homeomorphism to Sd2Sj is a homeomorphism between the
two links. By Condition 1, both links are (j − 1)-spheres.

It is clear that this implementation of the boolean subroutine doesBlend maintains
Sj as a j-manifold. For the top dimension, j = n, this implies that whenever Sn

contains a simplex then it also contains the simplices in its star. Symmetrically,
whenever W n−1 = W n − Sn contains a simplex it also contains its faces. In other
words, W n−1 is a complex. We can now use induction over the dimension and prove
that W j is a complex for all j. Similarly, whenever Sj contains a simplex then it
also contains its star within W j. Hence, if Sj is non-empty, then it is a j-manifold,
and this is true for every j. Finally, we notice that the result of the algorithm does
not depend on the order in which the simplices are processed. Indeed, the test of
the i-simplex ζ does not depend on whether or not any other i-simplices belong to
the j-stratum. We thus have a constructive proof of a global property of the Reeb
space.

Stratification Theorem. Let K be a combinatorial m-manifold, n ≥ 1, and
f : |K| → Rn a generic PL mapping. Then the Reeb space Wf of f is a stratified
space and the W j as constructed by the algorithm form its coarsest stratification.

We note that the constructive proof is really an algorithm only for n < 5. Other-
wise, the boolean subroutine attempts to recognize when two triangulated spaces of
dimension n − 1 ≥ 4 are homeomorphic. This problem is undecidable as proved by
Markov [26].

3.4 The Orientable 3-Manifold Case

We take a closer look at the Reeb spaces for PL mappings from an orientable 3-
manifold to the plane. In particular, we want an analysis of local cones. To keep
the number of local cones small, we assume simple generic mappings. Here we call
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Figure 3.3: From left to right: a regular edge and three simple critical edges. Each edge
is shown with a cross-section of its star and its lower link in bold.

a generic PL mapping f : |K| → Rn is a simple if every (n − 1)-simplex in Jf is a
simple singular simplex.

Genericity and simplicity. Let K be a compact combinatorial orientable 3-
manifold without boundary and f : |K| → R2 a PL mapping. We assume that
f is generic and simple. Specifically, we require that

I’. the intersection of a level set of f with |K(1)| is empty, one point, or two points
each in the interior of an edge;

II’. the Jacobi set of f is a 1-manifold, that is, each edge of Jf is a simple critical
edge and each vertex of Jf is the endpoint of exactly two edges in Jf .

Recall that to define the lower link of an edge, we use the function h~u : |K| → R
mapping a point x to the height of f(x) in the direction ~u ∈ S1 normal to the edge. A
critical edge is simple iff all reduced Betti numbers of this lower link vanish, except for
one, which is equal to 1. There are three possibilities: β̃−1 = 1 (the cross-section of
the edge is a minimum), β̃0 = 1 (a saddle), and β̃1 = 1 (a maximum); see Figure 3.3.
Condition II’ implies that Jf contains no duplicate edges and no duplicate vertices,
where by the latter we mean that each endpoint of an edge in Jf belongs to exactly
one other edge in Jf ; see also [8]. It is important to note that Condition II’ is not
generic. In other words, there may not be a PL mapping arbitrarily close to the
given PL mapping satisfying Condition II’. Condition I’ is generic.

Walks and sheets. To enumerate the topologically different types of cones that
may arise, we let p ∈Wf be a point of the Reeb space and B a small closed disk with
center c = πf (p) in the plane, as in §3.2. Furthermore, the core, C, is the component
of f−1(c) whose image under ρf is p, and the tube, T , is the component of f−1(B) that
contains C. Recall that r : BdT → R2 is the restriction of f that maps the boundary
of the tube to the boundary of the disk and that p has a closed neighborhood in Wf

that is homeomorphic to the cone over Wr = ρf (BdT ). It thus suffices to understand
the structure of Wr. We get insight into this structure by walking around the circle
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Figure 3.4: Left: the tube, its core, and the annulus that divides the tube into two.
Right: the closed neighborhood of p in the Reeb space and its image in the plane.

bounding B in a counter-clockwise order using α : [0, 1] → R2 with imα = BdB.
The walk begins and ends at the point a = α(0) = α(1). Letting b be the antipodal
point, we also walk along the straight diameter using β : [0, 1]→ R2 with a = β(0),
c = β(1

2
), and b = β(1). Note that each point of the two walks is the image of a curve

in the tube. The two one-parameter families sweep out the boundary of the tube
and another surface we refer to as the divider, D = T ∩ f−1 ◦ β[0, 1]. To describe
the two sweeps, we define

BdTs = T ∩ f−1 ◦ α[0, s];

Ds = T ∩ f−1 ◦ β[0, s],

for each 0 ≤ s ≤ 1. The simplest of all possible cases is illustrated in Figure 3.4.
There, none of the points in the disk B is critical. Hence, the preimage of every
point of α[0, 1] is a closed curve, and the same is true for the preimage of every point
of β[0, 1]. It follows that BdTs is an annulus, for every 0 < s < 1, that closes up
to form a torus when s reaches 1. Similarly, Ds is an annulus, for every 0 < s < 1,
and it remains one until the end. The divider, D, is therefore an annulus bounded
by the two closed curves shared with BdT . Since D also contains the core, C, the
only possible configuration is the one depicted in Figure 3.4. In this particular case,
the point p belongs to a sheet, that is, a piece of the 2-stratum of the Reeb space.
The points in the neighborhood correspond to closed curves forming a fibration of
the tube.

Choosing the walks. For the more complicated cases, it will be convenient to
choose the two walks such that the point a on the circle has a connected preimage
and the preimages of a and of b avoid the 1-skeleton of the barycentric subdivision
of K. We use the curves sweeping out the divider to prove that such points a and b
exist.

Endpoint Lemma. There exist antipodal points a and b of BdB such that r−1(a)
is connected and r−1(a) and r−1(b) both have empty intersection with (SdK)(1).

29



Proof. Each pair of antipodal points corresponds to a direction ~u ∈ S1 such that
~u is a positive multiple of b− a. Let β~u : [0, 1]→ R2 be the corresponding diagonal
walk and D(~u) the corresponding divider. Note that the dividers all share the core
but are otherwise disjoint.

Fixing a direction ~u and a point x in the core, we consider how the curve T ∩ f−1◦
β~u(s), which sweeps out D(~u) as s goes from 0 to 1, intersects a sufficiently small
neighborhood N(x) of x in |K|. If x 6∈ |Jf | then the curve looks locally like a line that
sweeps over x, passing it at s = 1

2
. Hence N(x) intersects the curve in a connected

piece, if at all. If x ∈ |Jf | then a curve approaches x, pinching off to a single point or
recombines leaving x in two different directions. In the former case, we see a closed
curve shrinking to a point or the other way round. In the later case, locally we see
the usual saddle picture of two pieces that look like the two branches of a hyperbola
passing through its pair of asymptotic lines. The two pieces are globally connected
along a component of the curve before meeting at x but are not connected after
meeting at x, or the other way round. There is an open semi-circle of directions
~u such that N(x) intersects a single component of the curve. This semi-circle is
determined by the image of the edge or edges in Jf that contains the point x. By
Condition I’, there are at most two points in the core that belong to |Jf | and by
Condition II’ at most two edges in Jf are adjacent to a vertex in the Jacobi set.
The corresponding two semi-circles are defined by the images of two different edges
in Jf . It follows that the two line segments intersect at c and the corresponding
semi-circles intersect in an arc of non-zero length. Picking a on this arc implies that
r−1 is connected. To satisfy the second requirement of avoiding the 1-skeleton of
SdK, we just need to choose a outside a measure zero subset of the arc.

Arcs. Beyond sheets, the next more complicated case is when the boundary of the
tube meets the Jacobi set in two points, x′ and x′′, in the interior of a single edge
or in the interior of two different edges. The core intersects |Jf | in a single point, x.
The points x′ and x′′ belong to different edges when x is a vertex of Jf and in this
case, we assume both edges are definite or both indefinite. The case in which the
two edges have different types will be discussed later. The assumption allows for two
cases and in both the point p belongs to an arc, that is, a piece of the 1-stratum.
The point x is the sole interior critical point of β−1 ◦ f : D → [0, 1] and the points
x′ and x′′ the sole interior critical points of α−1 ◦ f : BdT → [0, 1).

Case A.1. The edge of Jf that contains x′ and x′′ is definite. The tube is a ball
obtained by thickening the point x. The divider, D, depends on the choice
of the diameter since the preimage of a may be empty or one curve. Walking
along the circle, we start with a single curve that shrinks to the point x′ and
then reappears from the point x′′ and returns to its original position. The curve
then sweeps out a sphere from one pole to the other. The Reeb space is locally
a half-plane, like at a point on the left branch of the fold in Figure 3.5.
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Figure 3.5: The local cones for cases A.1 and A.2. The cone point belongs to an arc of
the Reeb space.

Case A.2. The edge of Jf that contains x′ and x′′ is indefinite. The tube is a solid
double torus obtained by thickening the figure-8 curve that crosses itself at x.
The divider, D, depends on the choice of the diameter since the preimage of b
may consist of one or two curves. Walking around the circle, we start with a
single curve that splits into two at x′ that later merges at x′′ to form again a
single curve. The Reeb space is locally a book with three pages, like at a point
on the right branch of the fold in Figure 3.5.

Nodes. Next, we consider the case when the core meets Jf at a vertex, x, one of the
incident edges of Jf is definite and the other incident edge is indefinite. By Condition
II’, the boundary of the tube meets the Jacobi set in two points x′ and x′′. The point
x is the sole interior critical point of β−1 ◦ f : D → [0, 1] and the points x′ and x′′

are the sole interior critical points of α−1 ◦ f : BdT → [0, 1).

Case N.1. Assuming x′ belongs to the indefinite and x′′ to the definite edge, the
walk around the circle starts with a single curve that splits into two at x′ of
which one shrinks to a point at x′′. The divider, D, depends on the choice of
the diameter. Specifically, the preimage of the endpoint b may consist of one
or of two curves. In the former case, we have one curve that persists along the
entire diameter. In the latter case, we start with one curve and get another
expanding around x. In either case, the core is a single curve and the Reeb
space is locally a disk with a fin sticking out, like at the origin in Figure 3.1;
see also Figure 3.6, left. The point p is a node of the Reeb space, that is, a
piece of the 0-stratum.

In the most complicated case, the core meets the Jacobi set in two points, x and y.
Each of the two points lies in the interior of an indefinite edge, else the core would be
disconnected. The boundary of the tube meets the Jacobi set in four points, x′, x′′,
y′, and y′′. Here, x and y are the sole interior critical points of β−1 ◦ f : D → [0, 1]
and x′, x′′, y′, y′′ are the sole interior critical points of α−1 ◦ f : BdT → [0, 1). There
are two cases and in both the point p is a node.

Case N.2. Walking along the diameter, we start with a single curve that gets
pinched at x and at y with the net effect that it remains a single curve. Know-
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Figure 3.6: From left to right: the local cone and the core for the Cases N.1, N.2, N.3
where the point p is a node of the Reeb space.

ing that the preimage of b is a single curve determines the boundary of the
tube. Using α to walk the circle, we start with a single curve that splits into
two curves at x′ and then merges into a single curve at y′. As we continue, the
single curve splits into two curves at x′′ and once again it merges into a single
curve at y′′. The core consists of two circles that meet at two points, x and y,
and the tube is a solid triple torus; see Figure 3.6, middle.

Case N.3. Walking along the diameter, we start with a single curve that splits into
three curves at x and y. Knowing that the preimage of b consists of three curves
again determines the boundary of the tube. As we walk along the circle, the
single curve splits into two at x′, one of the two splits into two at y′, giving a
total of three curves. As we continue, two of the three curves merge at x′′ and
the remaining two merge at y′′. The core is a double figure-8 and the tube a
solid triple torus; see Figure 3.6, right.

3.5 Remarks

We described an algorithm to construct the Reeb space of a piecewise linear mapping.
Let f : |K| → Rn be a PL mapping. The algorithm involves extending the image
of each (n− 1)-simplex to an (n− 1)-dimensional affine subspace. We then use the
arrangement of these affine subspaces to divide each (n+ 1)-simplex into chambers.
The complexity of this arrangement is on the order of the number of (n− 1)-simples
to the power n. Is there a better way to compute the Reeb space? Recently, Harvey
et. al. invented a fast randomized algorithm to compute the Reeb graph of a PL
function [20]. This algorithm has a flavor similar to that of our algorithm described
in §3.3. Is it possible to extend the randomized algorithm to higher dimensional Reeb
spaces? Will a fast algorithm for Reeb spaces encourage their use in data analysis?

The last section, §3.4, gives a local classification of the Reeb space for PL map-
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pings taking an orientable 3-manifold to the plane. However, these mapping must
satisfy a non-generic condition, namely Condition II’. What if Condition II’ is not
satisfied? That is, what if the lower link of each edge in the Jacobi set is not sim-
ple. For example, Figure 3.5 shows the two possible neighborhoods of a point in
a 1-stratum assuming Condition II’. The 1-stratum has one sheet attached to it or
three. Without Condition II’, it is possible to construct a PL mapping with an ar-
bitrary number sheets attached to the 1-stratum. It would be nice to have a local
classification of the Reeb space for generic PL mappings.

The definition of the Reeb space works for continuous mappings between arbitrary
manifolds and even arbitrary topological spaces. Is it worth studying the Reeb space
of mappings where the range space is something more complicated than Euclidean
space?
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4

Robustness of Preimages

The Reeb space captures 0-dimensional connectivity of preimages ignoring higher-
dimensional connectivity such as tunnels or voids. Homology makes the idea of
higher-dimensional connectivity precise. In this chapter, we look not only at the
higher dimensional connectivity of the preimage but ask about its stability. We
develop a method to measure the stability or robustness of each homology class in
the preimage. Roughly speaking, the robustness of a homology class is the amount
of perturbation necessary to remove it from the preimage.

4.1 Well Groups

Let X be an m-manifold, Y a Riemannian n-manifold, and A a k-dimensional sub-
manifold of Y. A continuous mapping f : X→ Y is admissible if f−1(A) has a finite
rank homology groups. Writing ‖a− b‖Y for the distance between the points a, b ∈ Y
define fA : X → R as fA(x) = infa∈A ‖f(x)− a‖Y. The distance function fA maps
each point in X to the distance between A and its image under f . The level set of
fA at a value r is the preimage of that value, f−1

A (r). The sublevel set for the same
value, r, is the preimage of [0, r]. Writing Ar for the set of points in Y at distance r
or less from A, we have f−1

A [0, r] = f−1(Ar).
A mapping h : X → Y homotopic to f is a ρ-perturbation of f if ‖h− f‖∞ ≤ ρ,

where the norm of the difference is the supremum over all x ∈ X of the distance
between h(x) and f(x) in Y. The preimage of A under a ρ-perturbation is con-
tained in the preimage of Aρ under f . Writing this in terms of distance functions,
we have h−1

A (0) ⊆ f−1
A [0, ρ]. This inclusion induces a homomorphism between the

corresponding homology groups,

jh : H(h−1
A (0))→ F(ρ),
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Y

A = {a} X× 0

gf f

X

r3

r1

Figure 4.1: The preimage of a, consisting of four points on the horizontal axis representing
X, is homeomorphic to the intersection of the curve with the horizontal line passing through
a. The well diagram consists of four values, one for each point in the preimage.

where we simplify notation by writing F(ρ) for H(f−1
A [0, ρ]). The image of this map,

denoted as im jh, is a subgroup of F(ρ). The intersection of subgroups is again a
subgroup.

Definition. The well group of f−1
A [0, r] is the largest subgroup U(r) ⊆ F(r) such

that the image of U(r) in F(ρ) is contained in
⋂
h:X→Y im jh, where h ranges over all

ρ-perturbations of f and ρ = r + δ for a sufficiently small δ > 0.

The reason for using ρ- instead of r-perturbations is technical and will become clear
later. The requirement that the perturbations be homotopic to f is not used in the
proofs and can therefore be dropped. However, removing the requirement changes
the well groups and therefore the meaning of our results. Similarly, we may obtain
additional variants of our results by modifying the definition of a ρ-perturbation in
other ways. For example, we may restrict the set of perturbations to a subset of the
space of all mappings.

Example. To illustrate the definitions, let us consider the example in Figure 4.1. In
this example, f is a mapping taking the reals into the reals and A = {a} is a point.
The preimage of A = {a} is a set of four points separated by three critical points
of f . From left to right, the values of f at these critical points are a + r1, a − r2,
a+ r3. Correspondingly, the distance function, fa : X→ R, has three critical values,
namely r1 > r2 > r3. Table 4.1 shows the ranks of F(r) and U(r) for values of r
in the four intervals delimited by the critical values. Starting with r = 0, we have
four points, each forming a component represented by a class in the homology group
and in the well group of the sublevel set of fa. Therefore, both groups are the same
and have rank four, see the first column in Table 4.1. Growing r turns the points
into intervals but leaves the groups the same until r reaches r3, the smallest of the
three critical values. At this time, the two right intervals merge into one, so the rank
of the homology group drops to three. We can find an (r3 + δ)-perturbation whose
level set at a consists of the left two points of f−1(a) but the right two points have
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[0, r3) [r3, r2) [r2, r1) [r1,∞)
F(r) 4 3 2 1
U(r) 4 2 2 0

Table 4.1: The ranks of the homology and well groups defined for the mapping f and the
submanifold A = {a} in Figure 4.1.

disappeared. Indeed, the level set of every (r3 + δ)-perturbation has a non-empty
intersection with the first two but can have empty intersection with the merged
interval on the right. Hence, the left two intervals have a representation in the well
group, the merged interval does not, and the rank of the well group is two; see
the second column in Table 4.1. The next change happens when r reaches r2. At
this time, the middle interval merges with the merged interval on the right. The
rank of the homology group drops to two, while the rank of the well group remains
unchanged at two; see the third column in Table 4.1. Finally, when r reaches r1, the
remaining two intervals merge into one, so the rank of the homology group drops to
one. We can find an (r1 + δ)-perturbation whose level set at a is empty, so the rank
of the well group drops to zero; see the last column in Table 4.1.

Terminal critical values. Recall that we assume the mapping f : X → Y is
admissible. The initial homology group, F(0) = H(f−1

A (0)), has therefore finite rank,
and because U(0) ⊆ F(0), the initial well group has finite rank. Imagine we grow the
sublevel set by gradually increasing r from zero to infinity. Since the admissibility
of f does not imply the tameness of the distance function, this leaves open the
possibility that fA has infinitely many homological critical values. We call a radius, r,
a terminal critical value of fA if for every sufficiently small δ > 0 the homomorphism
from F(r − δ) to F(r + δ) applied to U(r − δ) does not give U(r + δ). In contrast to
the homological critical values, there can only be a finite number of terminal critical
values. To see this, we note that the set of images whose common intersection is
the well group cannot decrease and the rank of the well group can therefore not
increase. To state this relationship between well groups more formally, we write
f(r, s) : F(r)→ F(s) for the homomorphism induced by inclusion.

Shrinking Wellness Lemma. For each choice of radii 0 ≤ r ≤ s, the image of
the well group at r contains the well group at s, that is, U(s) ⊆ f(r, s)(U(r)).

It follows the only way the well group can change is by lowering its rank. Since we
start with a finite rank well group at r = 0, there can only be finitely many terminal
critical values, which we denote as u1 < u2 < . . . < ul. To this sequence, we add
u0 = 0 on the left and ul+1 =∞ on the right. It is convenient to index the homology
groups and the well groups accordingly, writing Fi = F(ui) and Ui = U(ui) for all i.
To these sequence, we add F−1 = U−1 = 0 on the left and Fl+2 = Ul+2 = 0 on the
right. Furthermore, we write fi,j : Fi → Fj for all feasible choices of i ≤ j.
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Fi

Ui

Qi

Fi+1

Ui+1ai bi

β

α

Figure 4.2: Connecting two consecutive well groups to the quotient group introduced
between them. The class α dies a conventional death and the class β dies an unconventional
death.

4.2 Well Modules

In contrast to the homology groups, the well groups of the sublevel sets do not form
a filtration. Instead, they form a zigzag module. By definition of terminal critical
values, the rank of Ui exceeds the rank of Ui+1. The rank of the image, fi,i+1(Ui), is
somewhere between these two ranks. We call a difference between Ui and its image a
conventional death, in which a class maps to zero, and a difference between the image
and Ui+1 an unconventional death, in which the image of a class lies outside the next
well group. We capture both cases by inserting a new group between the contiguous
well groups; see Figure 4.2. To this end, we consider the restriction of fi,i+1 to Ui

and in particular its kernel, Ki = Ui ∩ ker fi,i+1, which we refer to as the vanishing
subgroup of Ui. Using this subgroup, we construct Qi = Ui/Ki. The forward map,
ai : Ui → Qi, is defined by mapping a class ξ to ξ + Ki. It is clearly surjective. The
backward map, bi : Ui+1 → Qi, is defined by mapping a class η to ξ + Ki, where ξ
belongs to f−1

i,i+1(η). This map is clearly injective. Instead of a filtration in which all
maps go from left to right, we get a sequence in which the maps alternate between
going forward and backward. As indicated below, every other group in the sequence
is a subgroup of the corresponding homology group,

Qi−1
bi−1← Ui

ai→ Qi
bi← Ui+1

ai+1→ Qi+1

↓ ↓
→ Fi → Fi+1 →

We call this sequence the well module of f and A denoted as U. We remark that
U is a special case of a zigzag module as introduced in [3]. It is special because all
forward maps are surjective and all backward maps are injective. Equivalently, there
are no births other than at U0.
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U0

Bi

Bi+1

Ai+1
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Fi

Ui

Fi+1

Ui+1

Figure 4.3: The left filtration decomposes U0 into the preimages of the well groups and
the preimages of their vanishing subgroups.

4.3 Well Diagrams

Well groups shrink at a finite number of radii. The history of the well groups can be
captured visually in something we call the well diagram.

Left filtration. Perhaps surprisingly, the evolution of the homology classes can still
be fully described by pairing births with deaths, just like for a filtration. To shed light
on this construction, we follow [3] and turn a zigzag module into a filtration. In our
case, all births happen at U0, so this transformation is easier than for general zigzag
modules. Write u0,i : U0 → Fi for the restriction of f0,i to the initial well group. By
the Shrinking Wellness Lemma, the image of this map contains the i-th well group,
that is, Ui ⊆ u0,i(U0). We consider the preimages of the well groups in U0 together
with the preimages of their vanishing subgroups, Ai = u−1

0,i (Ki) and Bi = u−1
0,i (Ui);

see Figure 4.3. We note that Ai/Ai−1 ' ker ai and Bi/Bi+1 ' cok bi. In words, the
first quotient represents the homology classes that die a conventional death and the
second quotient represents the homology classes that die an unconventional death.
As illustrated in Figure 4.3, the preimages form a nested sequence of subgroups of U0.
Together with the inclusion maps, this gives the left filtration of the zigzag module,

0→ A0 → . . .→ Al+1 = Bl+1 → . . .→ B0 = U0.

We can recover the well groups with Ui ' Bi/Ai−1. Recall that Ul+2 = 0, which
implies Kl+1 = Ul+1. It follows that the middle two groups in the left filtration, Al+1

and Bl+1, are indeed equal.

Compatible bases. A useful property of the left filtration is the existence of com-
patible bases of all its groups. By this we mean a basis of U0 that contains a basis for
each Ai and each Bi. Specifically, we rewrite U0 as a direct sum of kernels of forward
maps and cokernels of backward maps:

U0 ' ker a0 ⊕ . . .⊕ ker al+1 ⊕ cok bl ⊕ . . .⊕ cok b0.

Reading this decomposition from left to right, we encounter the Ai and the Bi in the
sequence they occur in the left filtration. Choosing a basis for each kernel and each

38



cokernel, we thus get compatible bases for all groups in the left filtration. We call
this the left filtration basis of U0. It is unique up to choosing bases for the kernels
and cokernels.

Consider now a homology class α in U0 and its representation as a sum of basis
vectors. We write α(ai) for the projection of α to the kernel of the i-th forward map,
which is obtained by removing all vectors that do not belong to the basis of ker ai.
Similarly, we write α(bi) for the projection of α to the preimage of cok bi. Letting j
be the minimum index such that α(ai) = α(bi) = 0 for all i ≥ j, we say that α falls
ill at uj+1.

Well diagrams. Constructing the birth-death pairs that describe the well module
is now easy. All classes are born at U0. However, to distinguish the changes in the
well group from those in the homology group, we say instead that all the classes get
well at U0. They fall ill later, and once they fall ill, they do not get well any more.
The drop in rank from Ui−1 to Ui is µi = rank(ker ai−1) + rank(cok bi−1). We thus
have µi copies of the point (0, ui) is the diagram. There is no information in the first
coordinates, which are all zero. We thus define the well diagram as the multiset of
values ui with multiplicities µi, denoting it as Dgm(U). For technical reasons that
will become obvious in the next section, we add infinitely many copies of 0 to this
diagram. Hence, each value in Dgm(U) is either 0, a positive real number, or ∞,
and the diagram itself is a multiset of values on the extended line, R̄ = R ∪ {±∞}.
It has infinitely many points at 0 and a finite number of non-zero points. Figure 4.1
shows the well diagram for the example considered in §4.1.

As suggested by the heading of this chapter, we think of each point in the diagram
as a measure for how resistant a homology class of f−1(A) is against perturbations
of the mapping. At each well group Ui, an entire set of homology classes falls ill, and
we call ui the robustness of each class α in this set, denoting it as %(α) = ui.

4.4 Stability

We are interested in relating the difference between mappings to the difference be-
tween their well diagrams. After quantifying these differences, we connect parallel
well modules to form new modules, and we finally prove that the well diagram is
stable.

Distance between functions. Let X be an m-manifold, Y a Riemannian n-
manifold, and A ⊆ Y a k-manifold. Let f, g : X→ Y be two admissible mappings and
assume they are homotopic. Recall that the distance between f and g is quantified
by taking the largest distance between corresponding images in Y, that is,

‖f − g‖∞ = sup
x∈X
‖f(x)− g(x)‖Y.

Using A, we get two functions, fA, gA : X→ R. Similar to the mappings, the distance
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between them is the largest difference between corresponding values, that is,

‖fA − gA‖∞ = sup
x∈X
|fA(x)− gA(x)|.

The two distances are related. Specifically, the distance between the functions cannot
exceed the distance between the mappings.

Distance Lemma. Let fA, gA : X→ R be the functions defined by the mappings
f, g : X→ Y and the submanifold A ⊆ Y. Then ‖fA − gA‖∞ ≤ ‖f − g‖∞.

Proof. We prove a stronger result, namely that the claimed inequality holds every-
where, that is,

|fA(x)− gA(x)| ≤ ‖f(x)− g(x)‖Y (4.1)

at every point x ∈ X. We may simplify this inequality by assuming that fA(x)−gA(x)
is non-negative. Suppose there exists a point a ∈ A for which gA(x) = ‖a− g(x)‖Y.
Being a metric, the distance in Y obeys the triangle inequality, and in particular

‖a− g(x)‖Y + ‖g(x)− f(x)‖Y ≥ ‖a− f(x)‖Y.

The right hand side is an upper bound on fA(x) which implies (4.1). Since we did
not assume that A is compact, there might not be a point at which g(x) attains its
distance to A. But for every δ > 0, there is a point a ∈ A such that gA(x) + δ ≥
‖a− g(x)‖Y. Plugging this into the triangle inequality above gives fA(x)−gA(x)−δ ≤
‖f(x)− g(x)‖Y. Letting δ go to zero, we get (4.1).

Distance between diagrams. Let G(r) be the homology group and V(r) ⊆ G(r)
the well group of g−1

A [0, r]. As for f , we insert quotients between contiguous well
groups and connect them with forward and backward maps to form a well module,
denoted as V. The corresponding well diagram, Dgm(V), is again a multiset of
points in R̄, consisting of infinitely many copies of 0 and finitely many non-zero
points. Recall that the bottleneck distance between the diagrams of f and g is
the length of the longest edge in the minimizing matching. Because our diagrams
are one-dimensional, the bottleneck distance is easy to compute. To describe the
algorithm, we order the positive points in both diagrams, getting

0 ≤ u1 ≤ u2 ≤ . . . ≤ uM ;
0 ≤ v1 ≤ v2 ≤ . . . ≤ vM ,

where we add zeros to make sure we have two sequences of the same length. The
inversion-free matching pairs ui with vi for all i. We prove that this matching gives
the bottleneck distance.
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Matching Lemma. Assuming the above notation, the bottleneck distance be-
tween Dgm(U) and Dgm(V) is equal to max1≤i≤M |ui − vi|.

Proof. For a given matching, we consider the vector of absolute differences, which
we sort largest first. Comparing two such vectors lexicographically, we now prove
that the inversion-free matching gives the minimum vector. This implies the claimed
inequality,

W∞(Dgm(U),Dgm(V)) = max
1≤i≤M

|ui − vi|,

To prove minimality, we consider a matching that has at least one inversion, that is,
pairs (ui, vt) and (uj, vs) with i < j and s < t. If ui = uj or vs = vt then switching
to the pairs (ui, vs) and (uj, vt) preserves the sorted vector of absolute differences.
Otherwise, the new vector is lexicographically smaller than the old vector. Indeed,
the minimum of the four points is ui or vs and the maximum is uj or vt. If the
minimum and the maximum are from opposite diagrams then they delimit the largest
of the four absolute differences, and this largest difference belongs to the old vector.
Otherwise, both absolute differences shrink when we switch the pairs. Repeatedly
removing inversions as described eventually leads to the inversion-free matching,
which shows that it minimizes the vector and its largest entry is the bottleneck
distance.

Bridges. The main tool in the proof of stability is the concept of a short bridge be-
tween parallel filtrations. The length of these bridges relates to the distance between
the functions defining the filtrations. Let ε = ‖f − g‖∞. By the Distance Lemma,
we have ‖fA − gA‖∞ ≤ ε, which implies that the sublevel set of gA for radius r is
contained in the sublevel set of fA for radius r+ ε. Hence, there is a homomorphism
Br : G(r) → F(r + ε), which we call the bridge from G to F at radius r. We use the
bridge to connect the initial segment of G to the terminal segment of F. The end-
points of the bridge satisfy the property expressed in the Shrinking Wellness Lemma.

Bridge Lemma. Let Br : G(r)→ F(r+ε) be the bridge at r, where ε = ‖f − g‖∞.
Then U(r + ε) ⊆ Br(V(r)).

Proof. Let α be a homology group in U(r+ ε). By definition of well group, there is
a sufficiently small δ > 0 such that α belongs to the image of H(h−1(A)) in F(r + ε)
for every (r + ε + δ)-perturbation h of f . This includes all (r + δ)-perturbations
of g. It follows that the preimage of α in G(r) belongs to the well group, that is,
B−1
r (α) ∈ V(r).

Everything we said about bridges is of course symmetric in F and G. In other
words, f−1

A [0, r] ⊆ g−1
A [0, r + ε] and there is a bridge from F(r) to G(r + ε) for every

r ≥ 0.
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V(0)

G(r)

V(r)
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F(r + ε)

U(∞)(r + ε)

Figure 4.4: The zigzag module obtained by connecting an initial segment of V to a
terminal segment of U.

New modules. We use the Bridge Lemma to construct new zigzag modules from
the well modules of f and g. Specifically, we use Br to connect the initial segment
of V, from V(0) to V(r), to the terminal segment of U, from U(r + ε) to U(∞).
To complete the module, we insert Q(r) = V(r)/(V(r) ∩ kerBr) between V(r) and
U(r+ ε). The forward map, from V(r) to Q(r), is surjective, and the backward map,
from U(r + ε) to Q(r) is injective; see Figure 4.4. The new zigzag module is thus of
the same type as the well modules implying it has a left filtration basis that gives
rise to a family of compatible bases for the groups in the left filtration.

A particular construction starts with the filtrations F(0) → . . . → F(∞) and
G(0) → . . . → G(∞) and adds B0 : G(0) → F(ε). Following the bridge from G to F
at 0, we get a new filtration and a new zigzag module, denoting the latter as W; see
Figure 4.5. The decomposition of W(0) = V(0) by the left filtration of W is similar to
the decomposition of U(0) by the left filtration of U; see Figure 4.3. Letting i be the
index such that ui ≤ ε < ui+1, we have F(ε) = Fi and U(ε) = Ui. The classes in Ai−1

and in U0/Bi die before we reach F(ε). The remaining classes form U(ε) ' Bi/Ai−1.
Correspondingly, there are homology classes in W(0) that die before we reach F(ε),
namely the ones in the kernel of the forward map, from W(0) to Q(0), and in the
preimage of the cokernel of the backward map, from U(ε) to Q(0). The remaining
classes form W(ε) ' B−1

0 (U(ε))/(W(0) ∩ kerB0). The two quotient groups, U(ε) and
W(ε), are decomposed in parallel so that choosing a basis for U(ε) gives one for W(ε).
This will be useful shortly.

Main result. We are now ready to state and prove the stability of the well diagram.

Stability Theorem for Well Diagrams. Let U,V be the well modules of the
functions fA, gA defined by the admissible, homotopic mappings f, g : X→ Y, where
X, Y, and A ⊆ Y are manifolds of finite dimension and Y is Riemannian. Then
W∞(Dgm(U),Dgm(V)) ≤ ‖f − g‖∞.

Proof. We construct a bijection from Dgm(U) to Dgm(V) such that the L∞-distance
between matched points is at most ε = ‖f − g‖∞. Specifically, we match each point
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Figure 4.5: The four curves represent four filtrations as well as four the zigzag modules.
The middle two are constructed from the outer two by adding bridges connecting the dots.

u ≤ ε in Dgm(U) with a copy of 0 in Dgm(V), and we use the parallel bases of U(ε)
and W(ε) for the rest, where W is the zigzag module obtained by adding the bridge
from G to F at radius 0, as described above.

Let α belong to the left filtration basis of U(0) such that its image belongs to
the basis of U(ε). Let r be the value at which α falls ill and note that r > ε. Let β
belong to the left filtration basis of V(0) = W(0) such that the images of α and β
in W(ε) = U(ε) coincide. We now construct yet another zigzag module, by adding a
first bridge from G(r − ε− δ) to F(r − δ) and a second bridge from F(r + δ) back to
G(r + ε + δ), where δ > 0 is sufficiently small such that there are no deaths in the
interval [r− δ, r+ δ], except possibly at r. We denote the resulting module by X; see
Figure 4.5. We note that all maps between groups are induced by inclusion so that
the diagram formed by the filtrations and the bridges between them commutes.

By construction, the image of β in F(r − δ) is non-zero and belongs to U(r − δ).
In contrast, the image of β in F(r+δ) is either zero or lies outside U(r+δ). Applying
the Bridge Lemma going backward along the first bridge, we note that the image of
β ∈ W(0) = X(0) in G(r − ε− δ) is non-zero and belongs to V(r − ε− δ). Applying
the Bridge Lemma going forward along the second bridge, we note that the image of
β in G(r+ ε+ δ) is either zero or lies outside V(r+ ε+ δ). Since we can choose δ > 0
as small as we like, this implies that β falls ill somewhere in the interval [r−ε, r+ε].
In the matching, this radius is paired with r, the radius at which α falls ill in U. The
absolute difference between the two radii is at most ε, as required.

4.5 Closed Forms

The definition of the well group involves intersecting an infinite number of images.
We take a closer look at two classes of mappings and provide a closed form expression
for their well groups.
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4.5.1 Equidimensional manifolds

Let K be a triangulation of a compact m-manifold without boundary and f : |K| →
Rm a generic PL mapping. Assume no vertex of K maps to 0 and set A = {0}.
Now subdivide K so that the preimage, f−1(0), is a subcomplex of the subdivision,
SdK. Define the PL mapping fA : |SdK| → R by setting each vertex v to ‖f(v)‖2.
An arbitrarily small perturbation to f ensures that no two vertices of SdK− f−1(0)
map to the same value under fA.

By assumption, each point x ∈ f−1(A) lies in the interior of an m-simplex σ ∈ K.
As the threshold value r increases, the inverse f−1

A [0, r] grows from a collection of
isolated points into a collection of m-dimensional components. Let C be a connected
component of f−1

A [0, r]. The degree mod 2 of f restricted to C is the number of points
in the intersection C ∩ f−1(0) mod 2. We denote this number as deg f |C . We call
the component C well if deg f |C is non-zero otherwise it is ill. See §2.3.4 for more
details about the degree mod 2 of a mapping.

Closed Form 1. The rank of the well group U(r) is the number of well compo-
nents in f−1

A [0, r].

Proof. There are two parts to the proof. We pick a component Cr in f−1
A [0, r].

If Cr is well, then we show that the preimage h−1(0) of every r-perturbation h of
f intersects Cr. If Cr is ill, then we construct an r-perturbation h of f such that
h−1(0) ∩ Cr = ∅.

Let Cr be a component of f−1
A [0, r]. Assuming Cr is well, the component Cr+ρ

in Xr+ρ containing Cr is also well, for any 0 < ρ ≤ δ where δ is a sufficiently small
value greater than zero. Now let h : |K| → Rm be an (r + ρ)-perturbation of f ,
where 0 < ρ < δ. Letting gt = (1 − t)f + th be the straight line homotopy taking
f to h, the image of BdCr+δ under gt never touches A simply because the image of
BdCr+δ under f is too far from A. Therefore, the sum of the intersection numbers
of each point in g−1

t (A)∩Cr+δ remains constant. In other words, the degree of Cr+δ
restricted to h is the same as the degree of f restricted to Cr+δ. We now know h−1(0)
intersects Cr+δ, for every (r + ρ)-perturbation of f . This implies that the class in
H0(Xr+δ) representing the component Cr+δ belongs to the well group.

We now assume Cr is ill and construct a perturbation h of f such that h−1(0) ∩
Cr = ∅. As the radius increases from zero to r, at some point two well components
contained in Cr merge at a critical vertex, say v. The resulting component C0 is ill.
The perturbation h needs to move v beyond A which it can do without changing the
f values of vertices outside C0. See Figure 4.6. The number of points in Cr mapping
to A is reduced by two. As the radius increases further, the same thing may happen
again. That is, two well components merge to form an ill component C1. As before,
construct a perturbation further reducing the number of points in Cr mapping to A.
The two perturbations differ from each other in two disjoint vertex subsets of Cr.
The continuation of this process results in the desired perturbation h.
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Figure 4.6: The perturbation moves the vertex v beyond A.

The well diagram is easily computable. A simple union-find data structure is
sufficient to keep track of the components in the sublevel set. Create a singleton set
for each point in f−1(A) and mark each set well. As r increases, one of two things
happen to the components of the sublevel set f−1

A [0, r]: two components merge or
a new component is born. In the case a new component is born, create a new set
and mark it ill. In the case two components merge, perform a find on the two sets
representing the two components and mark the union of the two sets well if exactly
one of them is well otherwise mark it ill. For each component that goes ill, place a
point on the well diagram at the radius it fell ill.

4.5.2 Real-valued Functions

Let f : X→ R be a real-valued function on a compact manifold X without boundary
and A = {0}. The well diagram of f and A encodes the robustness the level set
f−1(A). We show that the well group is determined by the image of exactly two per-
turbations. This is stated precisely in Closed Form 2, which is a simple consequence
of the Mayer-Vietoris Lemma.

Mayer-Vietoris Lemma. Suppose we write a topological space Y as Y = C∪D
with E = C ∩ D. If a class α ∈ H(Y) is supported by both C and D, then it is also
supported by E.

Proof. Let c : H(C)→ H(Y), d : H(D)→ H(Y), ec : H(E)→ H(C), and ed : H(E)→
H(D) be the homomorphisms induced by inclusion. Consider now the following
portion of the Mayer-Vietoris long exact sequence:

H(E)
(ec,ed)−−−→ H(C)⊕ H(D)

c−d−−−→ H(Y).

Choose αc ∈ H(C) and αd ∈ H(D) such that c(αc) = α and d(αd) = α. The
homomorphism c− d takes the pair (αc, αd) to zero implying the pair belongs to the
image of (ec, ed). This of course implies that α is supported by E.
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Recall, Xr is the sublevel set f−1
A [0, r]. If h : X→ R is an r-perturbation of f , then

the inclusion of h−1(0) into Xr induces a homomorphism jh : H(h−1(0)) → H(Xr).
The well group U(r) ⊆ H(Xr) is

U(r) =
⋂

‖f−h‖∞≤r
im jh.

This definition of the well group is slightly different from the original definition given
in §4.5.1 as it puts the death of a class right before a terminal critical value while in
this definition, it happens at the value. The well diagrams are the same under both
definitions. Now define B = f−1(−r) and T = f−1(r) and let b : H(B)→ H(Xr) and
t : H(T)→ H(Xr) be the homomorphisms induced by inclusion.

Closed Form 2. U(r) = im b ∩ im t, for every r ≥ 0.

Proof. To show U(r) ⊆ im b ∩ im t, consider a class α ∈ U(r). Define h0 = f + r
and h1 = f − r and note that they are r-perturbations of f with h−1

0 (0) = B and
h−1

1 (0) = T. By definition of well groups, α is supported by every r-perturbation of
f and therefore by h0 and h1. It follows α ∈ im b ∩ im t.

To show im b ∩ im t ⊆ U(r), we consider a class α ∈ im b ∩ im t and show α is
supported by h−1(0) for each r-perturbation h of f . We define C = {x ∈ Xr | h(x) ≤
0} and D = {x ∈ Xr | h(x) ≥ 0}. Note that C ∪ D = Xr while C ∩ D = h−1(0).
Furthermore, the inequality ‖f − h‖∞ ≤ r implies that B ⊆ C and T ⊆ D. By the
Mayer-Vietoris Lemma, α is supported by h−1(0) as required.

4.6 Applications

We now explore a few applications of the well groups.

4.6.1 Fixed Points of Mappings

A fixed point of a continuous mapping from a topological space to itself is a point that
is its own image. Assuming this space is the m-dimensional Euclidean space and b is
the mapping, we introduce a mapping f : Rm → Rm defined by f(x) = x− b(x). A
fixed point of b is a root of f , that is, f(x) = 0. Writing X = Y = Rm and A = {0},
the origin of Rm, we get the setting studied in this chapter. Each fixed point x
of b corresponds to a class in the 0-dimensional homology group of f−1(0). Using
well groups, we assign a non-negative robustness measure, %(x), to x. It gives the
magnitude of perturbation necessary to remove this fixed point. This does not mean
that a perturbation of smaller magnitude has a fixed point at precisely the same
location but rather that it has one or more fixed points in lieu of x. If the fixed point
x has the maximum robustness of any fixed point of b, then every ρ-perturbation of
f , for ρ < %(x), has at least one fixed point. This implication suffices to give a new
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proof of a classic topological result on fixed points. Let Bm be the closed unit ball
in Rm.

Brouwer’s Fixed Point Theorem. Every continuous mapping b : Bm → Bm

has a fixed point.

Proof. Extend b to a mapping from Rm to Rm by defining b(x) equal to its value
at x/‖x‖2 whenever x 6∈ Bm. Define f : Rm → Rm as f(x) = x − b(x) and let
g : Rm → Rm be the identity map, that is g(x) = x. We may assume that f is
admissible, else the homology group of f−1(0) has infinite rank and f has infinitely
many roots. The other mapping, g, is clearly admissible, with a single root at x = 0.
The distance between the two mappings is

‖f − g‖∞ = sup
x∈Rm

‖f(x)− g(x)‖2
= sup

x∈Rm

‖b(x)‖2,

which is at most 1. The well diagram of the identity map, g, consists of a single,
non-zero point at plus infinity. The Stability Theorem for Well Diagrams implies
that the well diagram of f also has a point at plus infinity. But this implies that f
has a root and, equivalently, that b has a fixed point.

The above reduction of fixed points to a transversality setting uses the difference
between two points, an operation not available if the mapping b : M→M is defined
on a general Riemannian manifold. In this case, we can use the correspondence
between the fixed points of b and the intersection points between the graph of b and
the diagonal in M ×M. Let X = M, let Y = M ×M, and let A = {(x, x) | x ∈ M}
be the diagonal. We think of Y as a fiber bundle over the base space M with fiber
M. The mapping b defines a section f : X → Y of the fiber bundle. A section is a
continuous assignment a point x in the base space, M, to a point in the fiber above
x. Define the section f : X→ Y by taking each point x ∈ X to f(x) = (x, b(x)). The
set of fixed points of b is homeomorphic to the inverse f−1(A). We are now closer to
the well group setting. The only thing that is missing is a metric on Y. Define the
distance between two points x = (x′, x′′) and y = (y′, y′′) in Y = M×M equal to

‖x− y‖Y =

{
∞ if x′ 6= y′;

‖x′′ − y′′‖M if x′ = y′.

The distance between two sections f, g : X→ Y is then supx∈X ‖f(x)− g(x)‖Y. Note
that there is nothing special about this metric. For example, one may decide to
stretch the metric over a subset of the base space. This will result in different robust
values.
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4.6.2 Periodic Orbits

We now consider iterations of self mappings. Letting M be a Riemannian manifold
and f : M → M a mapping, we write f j : M → M for the j-fold composition of f
with itself. A sequence

F j(x) = (x, f(x), f 2(x), . . . , f j−1(x))

is an order-j periodic orbit of f if f j(x) = f ◦ f j−1(x) = x. It is straightforward to
see the following relationship between f and its j-fold composite.

Orbit Lemma. A point x ∈M is a fixed point of f j iff Fj(x) is an order-j periodic
orbit of f .

We can therefore use well groups to measure the robustness of x, that is, to determine
how much f j needs to be perturbed to remove the fixed point. However, it would
be more interesting to measure how much f needs to be perturbed to remove the
periodic orbit. This is different because not every mapping can be written as the
j-fold composite of another mapping. Adapting the framework accordingly is not
difficult. Substituting perturbations h of f for those of f j, we intersect the images of
the homomorphisms induced by hj. Call the resulting values the robustness of the
periodic orbits of order j.

4.6.3 Vector Fields

A vector field is the continuous assignment of a point to each fiber of the tangent
bundle. More precisely, a vector field is a continuous section v : M → TM of the
tangent bundle. A point x ∈ M is a fixed point of the vector field if v(x) = 0.
Writing X = M, Y = TM, and A equal to the zero section of the tangent bundle,
the intersection of the image of v with A is homeomorphic to the set of fixed points
of v. Define the distance between a point a ∈ TxM, denoted as (x, a), and a point
b ∈ TyM, denoted as (y, b), equal to

‖(x, a)− (y, b)‖Y =

{
∞ if x 6= y;

‖a− b‖2 if x = y.

A vector field w : M→ TM is an r-perturbation of v if supx∈M ‖w(x)− v(x)‖Y ≤ r.
We are now in the setting of well groups. Each fixed point of v corresponds to a
0-dimensional homology class of v−1(A) and the robustness of the homology class
gives the magnitude of the perturbation necessary to remove it. Once again, this
metric is nothing special. One may just as easily use another metric on the tangent
bundle.

Now let us consider k vector fields on M where k is at most the dimension, m,
of M. We describe the k vector fields as a single section s : M → ⊕kTM of the
k-times direct sum of TM. The points of interest are the points x ∈M where the k
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vectors fail to span a k-dimensional subspace of the tangent space TxM. Denote by
Σ(s) ⊆ M the collection of these points. Letting S ⊂ ⊕kTM be the set of k-vectors
failing to span a k-dimensional subspace, Σ(s) = s−1(S). Once ⊕kTM is equipped
with a metric, we can use well groups to assign to each homology class of Σ(s) a
robustness. This may have applications in correlating multiple vector fields on the
same domain [11].

4.6.4 Simplification of the Contour

Imagine an object in R3. We get cues of its shape from the curves on its boundary
where the surface normal is orthogonal to the viewing direction [23]. The view is
an orthogonal projection to the plane and its contour, is the set of critical values.
Now imagine the object is wrinkly, for example a prune. The contour curve defining
the outline of the prune is more stable than the contour curve defined by a single
wrinkle. This is because we can remove the outline of the prune by taking the entire
prune to a single point in the plane but a smaller perturbation smoothes out the
wrinkle. The amount of perturbation necessary to remove a single wrinkle depends
on the thickness of the wrinkle. We use well groups to simplify the contour of f by
removing contour lines defined by thin wrinkles.

Assume f : M → R2 is a generic smooth mapping from an orientable compact
2-manifold without boundary to the plane. In particular, this means that the inverse
of any point in the plane is a finite number of points. Denote by Υ(f) the contour
of f or in other words, the set of critical values of f . Choose a point x ∈M and set
A = f(x). The well groups assign to each homology class of f−1(A) a robustness.
Let %(x) be the robustness of the component in f−1(A) containing x. Recall the
robustness of x is the radius where the well component containing x merges with
another well component at a singular point of f . The robustness of x is then the
distance between the image of x and the image of this singular point. Let % : M→ R
be the mapping assigning to each point x ∈M its robustness. The singular set, Σ(f),
of f is the zero set of %. The mapping % is usually not continuous. See Figure 4.7
for an example.

A thin wrinkle is a component of M−Σ(f) with small robustness. By removing
points with small robustness, we remove the thin wrinkles and the contour curves
defined by them. The super level set Mr = ρ−1[r,∞) is M eroded from its singularity
set by an amount r. The image, f(ρ−1(r)), of the level set ρ−1(r) is a simplification
of the contour Υ(f). See Figure 4.8. One drawback of this definition is that we erode
away from every point in the singular set and therefore erode into the more robust
wrinkles. It would be nice to see a method that erodes only the thin wrinkles leaving
the more robust wrinkles intact.
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x

y

z

x y z
Figure 4.7: Shown is a wrinkle, its cross section, and a graph of % along the cross section.
The robustness of each singular point is zero. Recall, the robustness of each point x, y,
and z is the radius where the well component containing each point goes ill. In this case,
the three well components merge at the same radius producing a well component. This
phenomenon explains the discontinuity at these three points.

Figure 4.8: By removing points with low robustness, the surface erodes away from the
singular set. Here we see the cross section of the wrinkle eroding away from the singular
set.

4.7 Remarks

We took the idea of persistence to the very general framework of well groups. Now
that we have the framework in place, many questions arise. We discuss a few now.

Transversality and well groups. Let f : X → Y be a smooth mapping between
two manifolds and A ⊂ Y a submanifold. The graph of f , gf f , is a submanifold of
the product space X×Y and the inverse f−1(A) is homeomorphic to the intersection
gf f ∩ (X × A). Recall, the mapping f is transverse to A if at every point in the
intersection of the two subspaces, the two tangent spaces meet in a non-zero angle.
Transverse intersections are, by definition, stable. That is, given f >∩ A, there is an
open neighborhood of f in C∞(X,Y) such that every mapping in this neighborhood
is transverse to A. Recall, the basis of the topology on C∞(X,Y) are sets of map-
pings with close derivatives. Transverse intersections are stable under infinitesimal
perturbations.

Well groups, on the other hand, offer a global analysis of the intersection. Here
we assume a continuous mapping f : X→ Y, A ⊆ Y a subspace, and Y has a metric.
The three spaces X, Y, and A need not be manifolds. The only requirement is that
the inverse, f−1(A), has finite rank homology. The well module assigns to each
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homology class in the preimage of A a robustness. The robustness of a homology
class is a real value that is the minimum distance to a perturbation of f that removes
that homology class from the intersection. The robustness information is captured
in the well diagram. By definition of well groups, the well diagrams are stable. In
other words, we can approximate the well diagram of f with the well diagram of
another mapping g close to f . In fact, the closer the mapping g is to f the better
the approximation. Here, the closeness of two mappings is not determined by their
derivatives but by the distance in Y between the two images of each point in X.

Computing well groups. The well group is the intersection of an infinite number
of images. As we have seen, for some cases, the well groups are efficiently computable.
For the rest, the answer is not so clear.

Well groups are computable in the case of PL mappings f : |K| → Rn and
A = {0} a single point. If q is the number of vertices in K, then the space C of all
PL mappings is isomorphic to Rqn. Now let h : |K| → Rn be a perturbation of f
and H : |K| × [0, 1] → Rn the straight line homotopy connecting f to h. If, in the
homotopy, the image of any (n−1)-simplex never crosses the origin, then the images
of the two homomorphisms jf : H(f−1(0)) → H(f−1

A [0, r]) and jh : H(h−1(0)) →
H(f−1

A [0, r]) equal. Therefore, we can use the (n− 1)-simplices to partition C into a
finite number of cells and consider just a single perturbation per cell. Finding these
cells is costly because it involves computing the arrangement of hyper-surfaces in
Rqn. Needless to say, a better algorithm would be nice.

Contours. Let f : X → R be a Morse function on a surface X. The set of critical
values, Υ(f), is a collection of points. As the mapping f varies, the set Υ(f) varies
with points disappearing and new ones appearing. Ordinary persistence tells us that
these critical values appear and disappear in pairs. The robustness of each critical
value is its persistence. That is, if a critical value vi is paired with vj, then the
persistence of each is |vi − vj|. If vi is paired with infinity, then its persistence is
infinity. The stability of persistence diagrams tells us that the persistence of each
critical value is stable.

Now we come back to contours. Let f : X → R2 be a smooth mapping from a
surface X to the plane and Υ(f) its critical values. Υ(f) is a collection of curves in
R2 and it varies as the mapping f varies. A small perturbation of f may introduce
many curves, but in the sense we discussed in §4.6.3, these curves are not very stable.
Can we assign to each homology class in H(Υ(f)) a robustness? It is clear that some
classes in H(Υ(f)) are more stable than others. That is, some classes require a larger
perturbation to remove than others. How can we use well groups to assign robustness
to each class in the homology of Υ(f)?

Untangling curves. Imagine a closed curve in the plane. The curve is a mapping
f : S1 → R2 from the circle to the plane. We assume the mapping f is continuous
but not necessarily an embedding. In other words, the curve is allowed to cross
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Figure 4.9: There are three pairs of crossing points. Untangling the loop on the right
requires a smaller perturbation than the one on the left. In this sense, the loop on the
right is more stable than the loop on the left.

itself. Some of these crossing are more stable than others. See Figure 4.9. Using
well groups, we can assign to each crossing a robustness. Define F : S1 × S1 →
R2 × R2 as F (x, y) = (f(x), f(y)). Letting A = {(a, a) ∈ R2 × R2 | a ∈ R2} be
the diagonal, the inverse F−1(A) is the set of pairs (x, y) such that f(x) = f(y).
In other words, F−1(A) are the crossing points of the mapping f plus the diagonal
pairs (x, x). Equipping R2×R2 with a suitable metric, the well groups assign to each
pair of crossing points a robustness. However, the well groups are computed using
perturbations of the mapping F not f . A perturbation of F , say H, may not be
realizable by a curve. That is, it is not always possible to write H(x, y) = (h(x), h(y))
for some continuous mapping h : S1 → R2. It is therefore unclear what the robustness
of each pair of crossing points really means. In particular, what is the relationship
between the robustness of a crossing and the amount we must perturb the mapping
to remove that crossing?

This idea can be generalized to study the self-intersection of a surface in R3.
Given a mapping f : X→ R3 from a surface to R3, we can setup a mapping similar
to F allowing us to assign to each homology class in the self-intersection a robustness.
Again, we run into the same problem. How does one interpret the robustness of each
homology class in the self-intersection?
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